MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clslp Unicode version

Theorem clslp 16711
Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
clslp  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( S  u.  ( ( limPt `  J
) `  S )
) )

Proof of Theorem clslp
StepHypRef Expression
1 lpfval.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
21neindisj 16686 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( x  e.  ( ( cls `  J
) `  S )  /\  n  e.  (
( nei `  J
) `  { x } ) ) )  ->  ( n  i^i 
S )  =/=  (/) )
32expr 601 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( n  e.  ( ( nei `  J
) `  { x } )  ->  (
n  i^i  S )  =/=  (/) ) )
43adantr 453 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  ( ( cls `  J
) `  S )
)  /\  -.  x  e.  S )  ->  (
n  e.  ( ( nei `  J ) `
 { x }
)  ->  ( n  i^i  S )  =/=  (/) ) )
5 difsn 3657 . . . . . . . . . . . . 13  |-  ( -.  x  e.  S  -> 
( S  \  {
x } )  =  S )
65ineq2d 3278 . . . . . . . . . . . 12  |-  ( -.  x  e.  S  -> 
( n  i^i  ( S  \  { x }
) )  =  ( n  i^i  S ) )
76neeq1d 2425 . . . . . . . . . . 11  |-  ( -.  x  e.  S  -> 
( ( n  i^i  ( S  \  {
x } ) )  =/=  (/)  <->  ( n  i^i 
S )  =/=  (/) ) )
87adantl 454 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  ( ( cls `  J
) `  S )
)  /\  -.  x  e.  S )  ->  (
( n  i^i  ( S  \  { x }
) )  =/=  (/)  <->  ( n  i^i  S )  =/=  (/) ) )
94, 8sylibrd 227 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  ( ( cls `  J
) `  S )
)  /\  -.  x  e.  S )  ->  (
n  e.  ( ( nei `  J ) `
 { x }
)  ->  ( n  i^i  ( S  \  {
x } ) )  =/=  (/) ) )
109ex 425 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( -.  x  e.  S  ->  ( n  e.  ( ( nei `  J ) `
 { x }
)  ->  ( n  i^i  ( S  \  {
x } ) )  =/=  (/) ) ) )
1110ralrimdv 2594 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( -.  x  e.  S  ->  A. n  e.  ( ( nei `  J ) `
 { x }
) ( n  i^i  ( S  \  {
x } ) )  =/=  (/) ) )
12 simpll 733 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  J  e.  Top )
13 simplr 734 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  S  C_  X
)
141clsss3 16628 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
1514sselda 3103 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  x  e.  X )
161islp2 16709 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X  /\  x  e.  X )  ->  (
x  e.  ( (
limPt `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { x } ) ( n  i^i  ( S  \  { x } ) )  =/=  (/) ) )
1712, 13, 15, 16syl3anc 1187 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( x  e.  ( ( limPt `  J
) `  S )  <->  A. n  e.  ( ( nei `  J ) `
 { x }
) ( n  i^i  ( S  \  {
x } ) )  =/=  (/) ) )
1811, 17sylibrd 227 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( -.  x  e.  S  ->  x  e.  ( ( limPt `  J ) `  S
) ) )
1918orrd 369 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( x  e.  S  \/  x  e.  ( ( limPt `  J
) `  S )
) )
20 elun 3226 . . . . 5  |-  ( x  e.  ( S  u.  ( ( limPt `  J
) `  S )
)  <->  ( x  e.  S  \/  x  e.  ( ( limPt `  J
) `  S )
) )
2119, 20sylibr 205 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  x  e.  ( S  u.  (
( limPt `  J ) `  S ) ) )
2221ex 425 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  S )  ->  x  e.  ( S  u.  ( ( limPt `  J ) `  S
) ) ) )
2322ssrdv 3106 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  ( S  u.  (
( limPt `  J ) `  S ) ) )
241sscls 16625 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
251lpsscls 16705 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  C_  ( ( cls `  J
) `  S )
)
2624, 25unssd 3261 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  u.  (
( limPt `  J ) `  S ) )  C_  ( ( cls `  J
) `  S )
)
2723, 26eqssd 3117 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( S  u.  ( ( limPt `  J
) `  S )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509    \ cdif 3075    u. cun 3076    i^i cin 3077    C_ wss 3078   (/)c0 3362   {csn 3544   U.cuni 3727   ` cfv 4592   Topctop 16463   clsccl 16587   neicnei 16666   limPtclp 16698
This theorem is referenced by:  islpi  16712  cldlp  16713  perfcls  16925
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-top 16468  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700
  Copyright terms: Public domain W3C validator