MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clslp Structured version   Unicode version

Theorem clslp 19443
Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
clslp  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( S  u.  ( ( limPt `  J
) `  S )
) )

Proof of Theorem clslp
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
21neindisj 19412 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( x  e.  ( ( cls `  J
) `  S )  /\  n  e.  (
( nei `  J
) `  { x } ) ) )  ->  ( n  i^i 
S )  =/=  (/) )
32expr 615 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( n  e.  ( ( nei `  J
) `  { x } )  ->  (
n  i^i  S )  =/=  (/) ) )
43adantr 465 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  ( ( cls `  J
) `  S )
)  /\  -.  x  e.  S )  ->  (
n  e.  ( ( nei `  J ) `
 { x }
)  ->  ( n  i^i  S )  =/=  (/) ) )
5 difsn 4161 . . . . . . . . . . . . 13  |-  ( -.  x  e.  S  -> 
( S  \  {
x } )  =  S )
65ineq2d 3700 . . . . . . . . . . . 12  |-  ( -.  x  e.  S  -> 
( n  i^i  ( S  \  { x }
) )  =  ( n  i^i  S ) )
76neeq1d 2744 . . . . . . . . . . 11  |-  ( -.  x  e.  S  -> 
( ( n  i^i  ( S  \  {
x } ) )  =/=  (/)  <->  ( n  i^i 
S )  =/=  (/) ) )
87adantl 466 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  ( ( cls `  J
) `  S )
)  /\  -.  x  e.  S )  ->  (
( n  i^i  ( S  \  { x }
) )  =/=  (/)  <->  ( n  i^i  S )  =/=  (/) ) )
94, 8sylibrd 234 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  ( ( cls `  J
) `  S )
)  /\  -.  x  e.  S )  ->  (
n  e.  ( ( nei `  J ) `
 { x }
)  ->  ( n  i^i  ( S  \  {
x } ) )  =/=  (/) ) )
109ex 434 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( -.  x  e.  S  ->  ( n  e.  ( ( nei `  J ) `
 { x }
)  ->  ( n  i^i  ( S  \  {
x } ) )  =/=  (/) ) ) )
1110ralrimdv 2880 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( -.  x  e.  S  ->  A. n  e.  ( ( nei `  J ) `
 { x }
) ( n  i^i  ( S  \  {
x } ) )  =/=  (/) ) )
12 simpll 753 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  J  e.  Top )
13 simplr 754 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  S  C_  X
)
141clsss3 19354 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
1514sselda 3504 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  x  e.  X )
161islp2 19440 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X  /\  x  e.  X )  ->  (
x  e.  ( (
limPt `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { x } ) ( n  i^i  ( S  \  { x } ) )  =/=  (/) ) )
1712, 13, 15, 16syl3anc 1228 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( x  e.  ( ( limPt `  J
) `  S )  <->  A. n  e.  ( ( nei `  J ) `
 { x }
) ( n  i^i  ( S  \  {
x } ) )  =/=  (/) ) )
1811, 17sylibrd 234 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( -.  x  e.  S  ->  x  e.  ( ( limPt `  J ) `  S
) ) )
1918orrd 378 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  ( x  e.  S  \/  x  e.  ( ( limPt `  J
) `  S )
) )
20 elun 3645 . . . . 5  |-  ( x  e.  ( S  u.  ( ( limPt `  J
) `  S )
)  <->  ( x  e.  S  \/  x  e.  ( ( limPt `  J
) `  S )
) )
2119, 20sylibr 212 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  (
( cls `  J
) `  S )
)  ->  x  e.  ( S  u.  (
( limPt `  J ) `  S ) ) )
2221ex 434 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  S )  ->  x  e.  ( S  u.  ( ( limPt `  J ) `  S
) ) ) )
2322ssrdv 3510 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  ( S  u.  (
( limPt `  J ) `  S ) ) )
241sscls 19351 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
251lpsscls 19436 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  C_  ( ( cls `  J
) `  S )
)
2624, 25unssd 3680 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  u.  (
( limPt `  J ) `  S ) )  C_  ( ( cls `  J
) `  S )
)
2723, 26eqssd 3521 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( S  u.  ( ( limPt `  J
) `  S )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   U.cuni 4245   ` cfv 5588   Topctop 19189   clsccl 19313   neicnei 19392   limPtclp 19429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-top 19194  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431
This theorem is referenced by:  islpi  19444  cldlp  19445  perfcls  19660
  Copyright terms: Public domain W3C validator