MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clscon Structured version   Visualization version   Unicode version

Theorem clscon 20456
Description: The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
clscon  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  ( Jt  ( ( cls `  J ) `  A
) )  e.  Con )

Proof of Theorem clscon
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll3 1050 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) ) )  ->  ( Jt  A )  e.  Con )
2 simpll1 1048 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  J  e.  (TopOn `  X
) )
3 simpll2 1049 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  A  C_  X )
4 simplrl 775 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  x  e.  J )
5 simplrr 776 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
y  e.  J )
6 simprl1 1054 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  (
( cls `  J
) `  A )
)  =/=  (/) )
7 n0 3709 . . . . . . . . 9  |-  ( ( x  i^i  ( ( cls `  J ) `
 A ) )  =/=  (/)  <->  E. z  z  e.  ( x  i^i  (
( cls `  J
) `  A )
) )
86, 7sylib 201 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  E. z  z  e.  ( x  i^i  (
( cls `  J
) `  A )
) )
92adantr 471 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  J  e.  (TopOn `  X )
)
10 topontop 19952 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
119, 10syl 17 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  J  e.  Top )
123adantr 471 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  A  C_  X )
13 toponuni 19953 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
149, 13syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  X  =  U. J )
1512, 14sseqtrd 3436 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  A  C_ 
U. J )
16 inss2 3621 . . . . . . . . . 10  |-  ( x  i^i  ( ( cls `  J ) `  A
) )  C_  (
( cls `  J
) `  A )
17 simpr 467 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  ( x  i^i  (
( cls `  J
) `  A )
) )
1816, 17sseldi 3398 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  ( ( cls `  J
) `  A )
)
194adantr 471 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  x  e.  J )
20 inss1 3620 . . . . . . . . . 10  |-  ( x  i^i  ( ( cls `  J ) `  A
) )  C_  x
2120, 17sseldi 3398 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  x )
22 eqid 2452 . . . . . . . . . 10  |-  U. J  =  U. J
2322clsndisj 20102 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  C_  U. J  /\  z  e.  ( ( cls `  J ) `  A ) )  /\  ( x  e.  J  /\  z  e.  x
) )  ->  (
x  i^i  A )  =/=  (/) )
2411, 15, 18, 19, 21, 23syl32anc 1279 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  (
x  i^i  A )  =/=  (/) )
258, 24exlimddv 1785 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  A
)  =/=  (/) )
26 simprl2 1055 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( y  i^i  (
( cls `  J
) `  A )
)  =/=  (/) )
27 n0 3709 . . . . . . . . 9  |-  ( ( y  i^i  ( ( cls `  J ) `
 A ) )  =/=  (/)  <->  E. z  z  e.  ( y  i^i  (
( cls `  J
) `  A )
) )
2826, 27sylib 201 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  E. z  z  e.  ( y  i^i  (
( cls `  J
) `  A )
) )
292adantr 471 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  J  e.  (TopOn `  X )
)
3029, 10syl 17 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  J  e.  Top )
313adantr 471 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  A  C_  X )
3229, 13syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  X  =  U. J )
3331, 32sseqtrd 3436 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  A  C_ 
U. J )
34 inss2 3621 . . . . . . . . . 10  |-  ( y  i^i  ( ( cls `  J ) `  A
) )  C_  (
( cls `  J
) `  A )
35 simpr 467 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  ( y  i^i  (
( cls `  J
) `  A )
) )
3634, 35sseldi 3398 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  ( ( cls `  J
) `  A )
)
375adantr 471 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  y  e.  J )
38 inss1 3620 . . . . . . . . . 10  |-  ( y  i^i  ( ( cls `  J ) `  A
) )  C_  y
3938, 35sseldi 3398 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  y )
4022clsndisj 20102 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  C_  U. J  /\  z  e.  ( ( cls `  J ) `  A ) )  /\  ( y  e.  J  /\  z  e.  y
) )  ->  (
y  i^i  A )  =/=  (/) )
4130, 33, 36, 37, 39, 40syl32anc 1279 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  (
y  i^i  A )  =/=  (/) )
4228, 41exlimddv 1785 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( y  i^i  A
)  =/=  (/) )
43 simprl3 1056 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  y
)  C_  ( X  \  ( ( cls `  J
) `  A )
) )
442, 10syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  J  e.  Top )
452, 13syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  X  =  U. J )
463, 45sseqtrd 3436 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  A  C_  U. J )
4722sscls 20082 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  C_  (
( cls `  J
) `  A )
)
4844, 46, 47syl2anc 671 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  A  C_  ( ( cls `  J ) `  A
) )
4948sscond 3538 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( X  \  (
( cls `  J
) `  A )
)  C_  ( X  \  A ) )
5043, 49sstrd 3410 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  y
)  C_  ( X  \  A ) )
51 ssv 3420 . . . . . . . . . 10  |-  X  C_  _V
52 ssdif 3536 . . . . . . . . . 10  |-  ( X 
C_  _V  ->  ( X 
\  A )  C_  ( _V  \  A ) )
5351, 52ax-mp 5 . . . . . . . . 9  |-  ( X 
\  A )  C_  ( _V  \  A )
5450, 53syl6ss 3412 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  y
)  C_  ( _V  \  A ) )
55 disj2 3780 . . . . . . . 8  |-  ( ( ( x  i^i  y
)  i^i  A )  =  (/)  <->  ( x  i^i  y )  C_  ( _V  \  A ) )
5654, 55sylibr 217 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( ( x  i^i  y )  i^i  A
)  =  (/) )
57 simprr 771 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( ( cls `  J
) `  A )  C_  ( x  u.  y
) )
5848, 57sstrd 3410 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  A  C_  ( x  u.  y ) )
592, 3, 4, 5, 25, 42, 56, 58nconsubb 20449 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  -.  ( Jt  A )  e.  Con )
6059expr 624 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) ) )  ->  ( ( ( cls `  J ) `
 A )  C_  ( x  u.  y
)  ->  -.  ( Jt  A )  e.  Con ) )
611, 60mt2d 122 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) ) )  ->  -.  ( ( cls `  J ) `  A )  C_  (
x  u.  y ) )
6261ex 440 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J
) )  ->  (
( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  ->  -.  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )
6362ralrimivva 2795 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  ->  -.  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )
64 simp1 1009 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  J  e.  (TopOn `  X ) )
6513sseq2d 3428 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  ( A  C_  X  <->  A  C_  U. J
) )
6665biimpa 491 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  C_ 
U. J )
6722clsss3 20085 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  ( ( cls `  J ) `  A
)  C_  U. J )
6810, 67sylan 478 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_ 
U. J )  -> 
( ( cls `  J
) `  A )  C_ 
U. J )
6966, 68syldan 477 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( cls `  J
) `  A )  C_ 
U. J )
7013adantr 471 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  X  =  U. J )
7169, 70sseqtr4d 3437 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( cls `  J
) `  A )  C_  X )
72713adant3 1029 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  ( ( cls `  J
) `  A )  C_  X )
73 connsub 20447 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
( cls `  J
) `  A )  C_  X )  ->  (
( Jt  ( ( cls `  J ) `  A
) )  e.  Con  <->  A. x  e.  J  A. y  e.  J  (
( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  ->  -.  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) ) )
7464, 72, 73syl2anc 671 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  ( ( Jt  ( ( cls `  J ) `
 A ) )  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  (
( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  ->  -.  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) ) )
7563, 74mpbird 240 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  ( Jt  ( ( cls `  J ) `  A
) )  e.  Con )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 986    = wceq 1448   E.wex 1667    e. wcel 1891    =/= wne 2622   A.wral 2737   _Vcvv 3013    \ cdif 3369    u. cun 3370    i^i cin 3371    C_ wss 3372   (/)c0 3699   U.cuni 4168   ` cfv 5561  (class class class)co 6276   ↾t crest 15330   Topctop 19928  TopOnctopon 19929   clsccl 20044   Conccon 20437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1673  ax-4 1686  ax-5 1762  ax-6 1809  ax-7 1855  ax-8 1893  ax-9 1900  ax-10 1919  ax-11 1924  ax-12 1937  ax-13 2092  ax-ext 2432  ax-rep 4487  ax-sep 4497  ax-nul 4506  ax-pow 4554  ax-pr 4612  ax-un 6571
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 987  df-3an 988  df-tru 1451  df-ex 1668  df-nf 1672  df-sb 1802  df-eu 2304  df-mo 2305  df-clab 2439  df-cleq 2445  df-clel 2448  df-nfc 2582  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3015  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4169  df-int 4205  df-iun 4250  df-iin 4251  df-br 4375  df-opab 4434  df-mpt 4435  df-tr 4470  df-eprel 4723  df-id 4727  df-po 4733  df-so 4734  df-fr 4771  df-we 4773  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-pred 5359  df-ord 5405  df-on 5406  df-lim 5407  df-suc 5408  df-iota 5525  df-fun 5563  df-fn 5564  df-f 5565  df-f1 5566  df-fo 5567  df-f1o 5568  df-fv 5569  df-ov 6279  df-oprab 6280  df-mpt2 6281  df-om 6681  df-1st 6781  df-2nd 6782  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-oadd 7173  df-er 7350  df-en 7557  df-fin 7560  df-fi 7912  df-rest 15332  df-topgen 15353  df-top 19932  df-bases 19933  df-topon 19934  df-cld 20045  df-ntr 20046  df-cls 20047  df-con 20438
This theorem is referenced by:  concompcld  20460
  Copyright terms: Public domain W3C validator