MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clscon Structured version   Unicode version

Theorem clscon 19797
Description: The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
clscon  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  ( Jt  ( ( cls `  J ) `  A
) )  e.  Con )

Proof of Theorem clscon
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll3 1037 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) ) )  ->  ( Jt  A )  e.  Con )
2 simpll1 1035 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  J  e.  (TopOn `  X
) )
3 simpll2 1036 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  A  C_  X )
4 simplrl 759 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  x  e.  J )
5 simplrr 760 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
y  e.  J )
6 simprl1 1041 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  (
( cls `  J
) `  A )
)  =/=  (/) )
7 n0 3799 . . . . . . . . 9  |-  ( ( x  i^i  ( ( cls `  J ) `
 A ) )  =/=  (/)  <->  E. z  z  e.  ( x  i^i  (
( cls `  J
) `  A )
) )
86, 7sylib 196 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  E. z  z  e.  ( x  i^i  (
( cls `  J
) `  A )
) )
92adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  J  e.  (TopOn `  X )
)
10 topontop 19294 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
119, 10syl 16 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  J  e.  Top )
123adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  A  C_  X )
13 toponuni 19295 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
149, 13syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  X  =  U. J )
1512, 14sseqtrd 3545 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  A  C_ 
U. J )
16 inss2 3724 . . . . . . . . . 10  |-  ( x  i^i  ( ( cls `  J ) `  A
) )  C_  (
( cls `  J
) `  A )
17 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  ( x  i^i  (
( cls `  J
) `  A )
) )
1816, 17sseldi 3507 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  ( ( cls `  J
) `  A )
)
194adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  x  e.  J )
20 inss1 3723 . . . . . . . . . 10  |-  ( x  i^i  ( ( cls `  J ) `  A
) )  C_  x
2120, 17sseldi 3507 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  x )
22 eqid 2467 . . . . . . . . . 10  |-  U. J  =  U. J
2322clsndisj 19442 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  C_  U. J  /\  z  e.  ( ( cls `  J ) `  A ) )  /\  ( x  e.  J  /\  z  e.  x
) )  ->  (
x  i^i  A )  =/=  (/) )
2411, 15, 18, 19, 21, 23syl32anc 1236 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( x  i^i  ( ( cls `  J
) `  A )
) )  ->  (
x  i^i  A )  =/=  (/) )
258, 24exlimddv 1702 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  A
)  =/=  (/) )
26 simprl2 1042 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( y  i^i  (
( cls `  J
) `  A )
)  =/=  (/) )
27 n0 3799 . . . . . . . . 9  |-  ( ( y  i^i  ( ( cls `  J ) `
 A ) )  =/=  (/)  <->  E. z  z  e.  ( y  i^i  (
( cls `  J
) `  A )
) )
2826, 27sylib 196 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  E. z  z  e.  ( y  i^i  (
( cls `  J
) `  A )
) )
292adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  J  e.  (TopOn `  X )
)
3029, 10syl 16 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  J  e.  Top )
313adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  A  C_  X )
3229, 13syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  X  =  U. J )
3331, 32sseqtrd 3545 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  A  C_ 
U. J )
34 inss2 3724 . . . . . . . . . 10  |-  ( y  i^i  ( ( cls `  J ) `  A
) )  C_  (
( cls `  J
) `  A )
35 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  ( y  i^i  (
( cls `  J
) `  A )
) )
3634, 35sseldi 3507 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  ( ( cls `  J
) `  A )
)
375adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  y  e.  J )
38 inss1 3723 . . . . . . . . . 10  |-  ( y  i^i  ( ( cls `  J ) `  A
) )  C_  y
3938, 35sseldi 3507 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  z  e.  y )
4022clsndisj 19442 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  C_  U. J  /\  z  e.  ( ( cls `  J ) `  A ) )  /\  ( y  e.  J  /\  z  e.  y
) )  ->  (
y  i^i  A )  =/=  (/) )
4130, 33, 36, 37, 39, 40syl32anc 1236 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  /\  z  e.  ( y  i^i  ( ( cls `  J
) `  A )
) )  ->  (
y  i^i  A )  =/=  (/) )
4228, 41exlimddv 1702 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( y  i^i  A
)  =/=  (/) )
43 simprl3 1043 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  y
)  C_  ( X  \  ( ( cls `  J
) `  A )
) )
442, 10syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  J  e.  Top )
452, 13syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  X  =  U. J )
463, 45sseqtrd 3545 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  A  C_  U. J )
4722sscls 19423 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  C_  (
( cls `  J
) `  A )
)
4844, 46, 47syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  A  C_  ( ( cls `  J ) `  A
) )
4948sscond 3646 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( X  \  (
( cls `  J
) `  A )
)  C_  ( X  \  A ) )
5043, 49sstrd 3519 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  y
)  C_  ( X  \  A ) )
51 ssv 3529 . . . . . . . . . 10  |-  X  C_  _V
52 ssdif 3644 . . . . . . . . . 10  |-  ( X 
C_  _V  ->  ( X 
\  A )  C_  ( _V  \  A ) )
5351, 52ax-mp 5 . . . . . . . . 9  |-  ( X 
\  A )  C_  ( _V  \  A )
5450, 53syl6ss 3521 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( x  i^i  y
)  C_  ( _V  \  A ) )
55 disj2 3879 . . . . . . . 8  |-  ( ( ( x  i^i  y
)  i^i  A )  =  (/)  <->  ( x  i^i  y )  C_  ( _V  \  A ) )
5654, 55sylibr 212 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( ( x  i^i  y )  i^i  A
)  =  (/) )
57 simprr 756 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  -> 
( ( cls `  J
) `  A )  C_  ( x  u.  y
) )
5848, 57sstrd 3519 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  A  C_  ( x  u.  y ) )
592, 3, 4, 5, 25, 42, 56, 58nconsubb 19790 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  /\  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )  ->  -.  ( Jt  A )  e.  Con )
6059expr 615 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) ) )  ->  ( ( ( cls `  J ) `
 A )  C_  ( x  u.  y
)  ->  -.  ( Jt  A )  e.  Con ) )
611, 60mt2d 117 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J ) )  /\  ( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) ) )  ->  -.  ( ( cls `  J ) `  A )  C_  (
x  u.  y ) )
6261ex 434 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  /\  ( x  e.  J  /\  y  e.  J
) )  ->  (
( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  ->  -.  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )
6362ralrimivva 2888 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  ( ( cls `  J ) `  A
) )  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  ->  -.  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) )
64 simp1 996 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  J  e.  (TopOn `  X ) )
6513sseq2d 3537 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  ( A  C_  X  <->  A  C_  U. J
) )
6665biimpa 484 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  C_ 
U. J )
6722clsss3 19426 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  ( ( cls `  J ) `  A
)  C_  U. J )
6810, 67sylan 471 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_ 
U. J )  -> 
( ( cls `  J
) `  A )  C_ 
U. J )
6966, 68syldan 470 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( cls `  J
) `  A )  C_ 
U. J )
7013adantr 465 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  X  =  U. J )
7169, 70sseqtr4d 3546 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( cls `  J
) `  A )  C_  X )
72713adant3 1016 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  ( ( cls `  J
) `  A )  C_  X )
73 connsub 19788 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
( cls `  J
) `  A )  C_  X )  ->  (
( Jt  ( ( cls `  J ) `  A
) )  e.  Con  <->  A. x  e.  J  A. y  e.  J  (
( ( x  i^i  ( ( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  ->  -.  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) ) )
7464, 72, 73syl2anc 661 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  ( ( Jt  ( ( cls `  J ) `
 A ) )  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  (
( cls `  J
) `  A )
)  =/=  (/)  /\  (
y  i^i  ( ( cls `  J ) `  A ) )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  ( ( cls `  J ) `  A
) ) )  ->  -.  ( ( cls `  J
) `  A )  C_  ( x  u.  y
) ) ) )
7563, 74mpbird 232 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X  /\  ( Jt  A )  e.  Con )  ->  ( Jt  ( ( cls `  J ) `  A
) )  e.  Con )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2817   _Vcvv 3118    \ cdif 3478    u. cun 3479    i^i cin 3480    C_ wss 3481   (/)c0 3790   U.cuni 4251   ` cfv 5594  (class class class)co 6295   ↾t crest 14692   Topctop 19261  TopOnctopon 19262   clsccl 19385   Conccon 19778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-oadd 7146  df-er 7323  df-en 7529  df-fin 7532  df-fi 7883  df-rest 14694  df-topgen 14715  df-top 19266  df-bases 19268  df-topon 19269  df-cld 19386  df-ntr 19387  df-cls 19388  df-con 19779
This theorem is referenced by:  concompcld  19801
  Copyright terms: Public domain W3C validator