MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clscld Structured version   Unicode version

Theorem clscld 18495
Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clscld  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )

Proof of Theorem clscld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . 3  |-  X  = 
U. J
21clsval 18485 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
31topcld 18483 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
43anim1i 565 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  e.  (
Clsd `  J )  /\  S  C_  X ) )
5 sseq2 3368 . . . . . 6  |-  ( x  =  X  ->  ( S  C_  x  <->  S  C_  X
) )
65elrab 3108 . . . . 5  |-  ( X  e.  { x  e.  ( Clsd `  J
)  |  S  C_  x }  <->  ( X  e.  ( Clsd `  J
)  /\  S  C_  X
) )
74, 6sylibr 212 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  e.  { x  e.  ( Clsd `  J
)  |  S  C_  x } )
8 ne0i 3633 . . . 4  |-  ( X  e.  { x  e.  ( Clsd `  J
)  |  S  C_  x }  ->  { x  e.  ( Clsd `  J
)  |  S  C_  x }  =/=  (/) )
97, 8syl 16 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { x  e.  ( Clsd `  J )  |  S  C_  x }  =/=  (/) )
10 ssrab2 3427 . . 3  |-  { x  e.  ( Clsd `  J
)  |  S  C_  x }  C_  ( Clsd `  J )
11 intcld 18488 . . 3  |-  ( ( { x  e.  (
Clsd `  J )  |  S  C_  x }  =/=  (/)  /\  { x  e.  ( Clsd `  J
)  |  S  C_  x }  C_  ( Clsd `  J ) )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  ( Clsd `  J
) )
129, 10, 11sylancl 657 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  ( Clsd `  J
) )
132, 12eqeltrd 2509 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1757    =/= wne 2598   {crab 2711    C_ wss 3318   (/)c0 3627   U.cuni 4081   |^|cint 4118   ` cfv 5408   Topctop 18342   Clsdccld 18464   clsccl 18466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-br 4283  df-opab 4341  df-mpt 4342  df-id 4625  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-top 18347  df-cld 18467  df-cls 18469
This theorem is referenced by:  clsf  18496  clsss3  18507  cmntrcld  18511  iscld3  18512  clsidm  18515  restcls  18629  cncls2i  18718  nrmsep  18805  lpcls  18812  regsep2  18824  hauscmplem  18853  hausllycmp  18942  txcls  19021  ptclsg  19032  regr1lem  19156  kqreglem1  19158  kqreglem2  19159  kqnrmlem1  19160  kqnrmlem2  19161  fclscmpi  19446  tgptsmscld  19569  cnllycmp  20372  clsocv  20606  cmpcmet  20672  cncmet  20677  limcnlp  21197  clsun  28369  cldregopn  28372  heibor1lem  28554
  Copyright terms: Public domain W3C validator