MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climuni Structured version   Unicode version

Theorem climuni 13594
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )

Proof of Theorem climuni
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 10967 . 2  |-  1  e.  ZZ
2 nnuz 11194 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 10968 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  1  e.  ZZ )
4 climcl 13541 . . . . . . . . . . 11  |-  ( F  ~~>  A  ->  A  e.  CC )
543ad2ant1 1026 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  A  e.  CC )
6 climcl 13541 . . . . . . . . . . 11  |-  ( F  ~~>  B  ->  B  e.  CC )
763ad2ant2 1027 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  B  e.  CC )
85, 7subcld 9985 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( A  -  B )  e.  CC )
9 simp3 1007 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  A  =/=  B )
105, 7, 9subne0d 9994 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( A  -  B )  =/=  0
)
118, 10absrpcld 13488 . . . . . . . 8  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( abs `  ( A  -  B
) )  e.  RR+ )
1211rphalfcld 11353 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( ( abs `  ( A  -  B ) )  / 
2 )  e.  RR+ )
13 eqidd 2430 . . . . . . 7  |-  ( ( ( F  ~~>  A  /\  F 
~~>  B  /\  A  =/= 
B )  /\  k  e.  NN )  ->  ( F `  k )  =  ( F `  k ) )
14 simp1 1005 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  F  ~~>  A )
152, 3, 12, 13, 14climi 13552 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) )
16 simp2 1006 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  F  ~~>  B )
172, 3, 12, 13, 16climi 13552 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) )
182rexanuz2 13391 . . . . . 6  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  B ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) ) )
1915, 17, 18sylanbrc 668 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) )
20 nnz 10959 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
21 uzid 11173 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
22 ne0i 3773 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
23 r19.2z 3892 . . . . . . . . . 10  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) )  ->  E. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) ) )
2423ex 435 . . . . . . . . 9  |-  ( (
ZZ>= `  j )  =/=  (/)  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
2520, 21, 22, 244syl 19 . . . . . . . 8  |-  ( j  e.  NN  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
26 simpr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
27 simpll 758 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  A  e.  CC )
2826, 27abssubd 13493 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  A ) )  =  ( abs `  ( A  -  ( F `  k )
) ) )
2928breq1d 4436 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  <-> 
( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )
30 simplr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  B  e.  CC )
31 subcl 9873 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
3231adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( A  -  B )  e.  CC )
3332abscld 13476 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( A  -  B )
)  e.  RR )
34 abs3lem 13380 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( A  -  B
) )  e.  RR ) )  ->  (
( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3527, 30, 26, 33, 34syl22anc 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3633ltnrd 9768 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  -.  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) )
3736pm2.21d 109 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) )  ->  -.  1  e.  ZZ ) )
3835, 37syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  -.  1  e.  ZZ ) )
3938expd 437 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  ( F `  k )
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4029, 39sylbid 218 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4140impr 623 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 )  ->  -.  1  e.  ZZ ) )
4241adantld 468 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  ->  -.  1  e.  ZZ ) )
4342expimpd 606 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4443rexlimdvw 2927 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4525, 44sylan9r 662 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4645rexlimdva 2924 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
475, 7, 46syl2anc 665 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4819, 47mpd 15 . . . 4  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A  =/=  B
)  ->  -.  1  e.  ZZ )
49483expia 1207 . . 3  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  ( A  =/=  B  ->  -.  1  e.  ZZ )
)
5049necon4ad 2651 . 2  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  (
1  e.  ZZ  ->  A  =  B ) )
511, 50mpi 21 1  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783   (/)c0 3767   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   1c1 9539    < clt 9674    - cmin 9859    / cdiv 10268   NNcn 10609   2c2 10659   ZZcz 10937   ZZ>=cuz 11159   abscabs 13276    ~~> cli 13526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530
This theorem is referenced by:  fclim  13595  climeu  13597  summolem2  13760  summo  13761  prodmolem2  13967  prodmo  13968  ef0  14123  efcj  14124  efaddlem  14125  ioombl1lem4  22391  mbflimlem  22502  itg2i1fseq  22590  itg2addlem  22593  plyeq0lem  23032  ulmuni  23212  leibpi  23733  lgamp1  23847  lgam1  23854  sumnnodd  37281  stirlinglem15  37518  fouriersw  37662
  Copyright terms: Public domain W3C validator