MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsup Structured version   Visualization version   Unicode version

Theorem climsup 13733
Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of [Gleason] p. 180. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
climsup.1  |-  Z  =  ( ZZ>= `  M )
climsup.2  |-  ( ph  ->  M  e.  ZZ )
climsup.3  |-  ( ph  ->  F : Z --> RR )
climsup.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
climsup.5  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x )
Assertion
Ref Expression
climsup  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  <  )
)
Distinct variable groups:    x, k, F    ph, k    k, Z, x
Allowed substitution hints:    ph( x)    M( x, k)

Proof of Theorem climsup
Dummy variables  j  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsup.3 . . . . . . . . . 10  |-  ( ph  ->  F : Z --> RR )
2 frn 5735 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
31, 2syl 17 . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  RR )
4 ffn 5728 . . . . . . . . . . . 12  |-  ( F : Z --> RR  ->  F  Fn  Z )
51, 4syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  Z )
6 climsup.2 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
7 uzid 11173 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
86, 7syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
9 climsup.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
108, 9syl6eleqr 2540 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  Z )
11 fnfvelrn 6019 . . . . . . . . . . 11  |-  ( ( F  Fn  Z  /\  M  e.  Z )  ->  ( F `  M
)  e.  ran  F
)
125, 10, 11syl2anc 667 . . . . . . . . . 10  |-  ( ph  ->  ( F `  M
)  e.  ran  F
)
13 ne0i 3737 . . . . . . . . . 10  |-  ( ( F `  M )  e.  ran  F  ->  ran  F  =/=  (/) )
1412, 13syl 17 . . . . . . . . 9  |-  ( ph  ->  ran  F  =/=  (/) )
15 climsup.5 . . . . . . . . . 10  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x )
16 breq1 4405 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  k )  ->  (
y  <_  x  <->  ( F `  k )  <_  x
) )
1716ralrn 6025 . . . . . . . . . . . 12  |-  ( F  Fn  Z  ->  ( A. y  e.  ran  F  y  <_  x  <->  A. k  e.  Z  ( F `  k )  <_  x
) )
1817rexbidv 2901 . . . . . . . . . . 11  |-  ( F  Fn  Z  ->  ( E. x  e.  RR  A. y  e.  ran  F  y  <_  x  <->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x
) )
195, 18syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( E. x  e.  RR  A. y  e. 
ran  F  y  <_  x  <->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x ) )
2015, 19mpbird 236 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR  A. y  e.  ran  F  y  <_  x )
213, 14, 203jca 1188 . . . . . . . 8  |-  ( ph  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
22 suprcl 10569 . . . . . . . 8  |-  ( ( ran  F  C_  RR  /\ 
ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
2321, 22syl 17 . . . . . . 7  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
24 ltsubrp 11335 . . . . . . 7  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  ) )
2523, 24sylan 474 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  sup ( ran  F ,  RR ,  <  ) )
2621adantr 467 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ran  F 
C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
27 rpre 11308 . . . . . . . 8  |-  ( y  e.  RR+  ->  y  e.  RR )
28 resubcl 9938 . . . . . . . 8  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y )  e.  RR )
2923, 27, 28syl2an 480 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  e.  RR )
30 suprlub 10571 . . . . . . 7  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  -  y )  e.  RR )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  )  <->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
) )
3126, 29, 30syl2anc 667 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  )  <->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
) )
3225, 31mpbid 214 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
)
33 breq2 4406 . . . . . . . 8  |-  ( k  =  ( F `  j )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  k  <->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) ) )
3433rexrn 6024 . . . . . . 7  |-  ( F  Fn  Z  ->  ( E. k  e.  ran  F ( sup ( ran 
F ,  RR ,  <  )  -  y )  <  k  <->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) ) )
355, 34syl 17 . . . . . 6  |-  ( ph  ->  ( E. k  e. 
ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k  <->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y )  < 
( F `  j
) ) )
3635biimpa 487 . . . . 5  |-  ( (
ph  /\  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
)  ->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) )
3732, 36syldan 473 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) )
38 ffvelrn 6020 . . . . . . . . . . . 12  |-  ( ( F : Z --> RR  /\  j  e.  Z )  ->  ( F `  j
)  e.  RR )
391, 38sylan 474 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  e.  RR )
4039ad2ant2r 753 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  j )  e.  RR )
411adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : Z
--> RR )
429uztrn2 11176 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
43 ffvelrn 6020 . . . . . . . . . . 11  |-  ( ( F : Z --> RR  /\  k  e.  Z )  ->  ( F `  k
)  e.  RR )
4441, 42, 43syl2an 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  RR )
4523ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
46 simprr 766 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
47 fzssuz 11839 . . . . . . . . . . . . . 14  |-  ( j ... k )  C_  ( ZZ>= `  j )
48 uzss 11179 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  ( ZZ>=
`  M ) )
4948, 9syl6sseqr 3479 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  Z
)
5049, 9eleq2s 2547 . . . . . . . . . . . . . . 15  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  C_  Z )
5150ad2antrl 734 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ZZ>= `  j
)  C_  Z )
5247, 51syl5ss 3443 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... k )  C_  Z
)
53 ffvelrn 6020 . . . . . . . . . . . . . . . 16  |-  ( ( F : Z --> RR  /\  n  e.  Z )  ->  ( F `  n
)  e.  RR )
5453ralrimiva 2802 . . . . . . . . . . . . . . 15  |-  ( F : Z --> RR  ->  A. n  e.  Z  ( F `  n )  e.  RR )
551, 54syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  Z  ( F `  n )  e.  RR )
5655ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  Z  ( F `  n )  e.  RR )
57 ssralv 3493 . . . . . . . . . . . . 13  |-  ( ( j ... k ) 
C_  Z  ->  ( A. n  e.  Z  ( F `  n )  e.  RR  ->  A. n  e.  ( j ... k
) ( F `  n )  e.  RR ) )
5852, 56, 57sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  ( j ... k ) ( F `  n
)  e.  RR )
5958r19.21bi 2757 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... k
) )  ->  ( F `  n )  e.  RR )
60 fzssuz 11839 . . . . . . . . . . . . . 14  |-  ( j ... ( k  - 
1 ) )  C_  ( ZZ>= `  j )
6160, 51syl5ss 3443 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... ( k  -  1 ) )  C_  Z
)
6261sselda 3432 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  n  e.  Z )
63 climsup.4 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
6463ralrimiva 2802 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
6564ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
66 fveq2 5865 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
67 oveq1 6297 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
6867fveq2d 5869 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
6966, 68breq12d 4415 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
( F `  k
)  <_  ( F `  ( k  +  1 ) )  <->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) ) )
7069rspccva 3149 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) )  /\  n  e.  Z )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7165, 70sylan 474 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  Z )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7262, 71syldan 473 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7346, 59, 72monoord 12243 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  j )  <_  ( F `  k )
)
7440, 44, 45, 73lesub2dd 10230 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 k ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) ) )
7545, 44resubcld 10047 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 k ) )  e.  RR )
7645, 40resubcld 10047 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) )  e.  RR )
7727ad2antlr 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  y  e.  RR )
78 lelttr 9724 . . . . . . . . . 10  |-  ( ( ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  e.  RR  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  <  y )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
7975, 76, 77, 78syl3anc 1268 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k ) )  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 j ) )  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) )  <  y )  -> 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
8074, 79mpand 681 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  <  y  -> 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
81 ltsub23 10094 . . . . . . . . 9  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR  /\  ( F `
 j )  e.  RR )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  ( F `  j )  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  <  y )
)
8245, 77, 40, 81syl3anc 1268 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  < 
y ) )
8321ad2antrr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
845adantr 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  Fn  Z )
85 fnfvelrn 6019 . . . . . . . . . . . 12  |-  ( ( F  Fn  Z  /\  k  e.  Z )  ->  ( F `  k
)  e.  ran  F
)
8684, 42, 85syl2an 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  ran  F )
87 suprub 10570 . . . . . . . . . . 11  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x )  /\  ( F `
 k )  e. 
ran  F )  -> 
( F `  k
)  <_  sup ( ran  F ,  RR ,  <  ) )
8883, 86, 87syl2anc 667 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  <_  sup ( ran  F ,  RR ,  <  ) )
8944, 45, 88abssuble0d 13494 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  =  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) ) )
9089breq1d 4412 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k )
)  <  y )
)
9180, 82, 903imtr4d 272 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9291anassrs 654 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9392ralrimdva 2806 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9493reximdva 2862 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  sup ( ran 
F ,  RR ,  <  ) ) )  < 
y ) )
9537, 94mpd 15 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y )
9695ralrimiva 2802 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y )
97 fvex 5875 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
989, 97eqeltri 2525 . . . 4  |-  Z  e. 
_V
99 fex 6138 . . . 4  |-  ( ( F : Z --> RR  /\  Z  e.  _V )  ->  F  e.  _V )
1001, 98, 99sylancl 668 . . 3  |-  ( ph  ->  F  e.  _V )
101 eqidd 2452 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
10223recnd 9669 . . 3  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
1031, 43sylan 474 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
104103recnd 9669 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1059, 6, 100, 101, 102, 104clim2c 13569 . 2  |-  ( ph  ->  ( F  ~~>  sup ( ran  F ,  RR ,  <  )  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y ) )
10696, 105mpbird 236 1  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   _Vcvv 3045    C_ wss 3404   (/)c0 3731   class class class wbr 4402   ran crn 4835    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290   supcsup 7954   RRcr 9538   1c1 9540    + caddc 9542    < clt 9675    <_ cle 9676    - cmin 9860   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   ...cfz 11784   abscabs 13297    ~~> cli 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552
This theorem is referenced by:  isumsup2  13904  climcnds  13909  itg1climres  22672  itg2monolem1  22708  itg2i1fseq  22713  itg2i1fseq2  22714  emcllem6  23926  lmdvg  28759  esumpcvgval  28899
  Copyright terms: Public domain W3C validator