MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsqz Structured version   Unicode version

Theorem climsqz 13548
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climsqz.5  |-  ( ph  ->  G  e.  W )
climsqz.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climsqz.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
climsqz.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
climsqz.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  A )
Assertion
Ref Expression
climsqz  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    k, F    ph, k    A, k    k, G   
k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climsqz
Dummy variables  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
32adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  M  e.  ZZ )
4 simpr 459 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5 eqidd 2455 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
6 climadd.4 . . . . . 6  |-  ( ph  ->  F  ~~>  A )
76adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  F  ~~>  A )
81, 3, 4, 5, 7climi2 13419 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x )
91uztrn2 11099 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
10 climsqz.6 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
11 climsqz.7 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
121, 2, 6, 10climrecl 13491 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  RR )
1312adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
14 climsqz.8 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
1510, 11, 13, 14lesub2dd 10165 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  -  ( G `  k ) )  <_ 
( A  -  ( F `  k )
) )
16 climsqz.9 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  A )
1711, 13, 16abssuble0d 13349 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  =  ( A  -  ( G `  k )
) )
1810, 11, 13, 14, 16letrd 9728 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  A )
1910, 13, 18abssuble0d 13349 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  =  ( A  -  ( F `  k )
) )
2015, 17, 193brtr4d 4469 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  <_ 
( abs `  (
( F `  k
)  -  A ) ) )
2120adantlr 712 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  <_ 
( abs `  (
( F `  k
)  -  A ) ) )
2211adantlr 712 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
2312ad2antrr 723 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  A  e.  RR )
2422, 23resubcld 9983 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  e.  RR )
2524recnd 9611 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  e.  CC )
2625abscld 13352 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  e.  RR )
2710adantlr 712 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
2827, 23resubcld 9983 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  RR )
2928recnd 9611 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  CC )
3029abscld 13352 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  e.  RR )
31 rpre 11227 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
3231ad2antlr 724 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  x  e.  RR )
33 lelttr 9664 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  A ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <_  ( abs `  ( ( F `  k )  -  A
) )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
x ) )
3426, 30, 32, 33syl3anc 1226 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <_  ( abs `  ( ( F `  k )  -  A
) )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
x ) )
3521, 34mpand 673 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( abs `  (
( F `  k
)  -  A ) )  <  x  -> 
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
369, 35sylan2 472 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  ( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3736anassrs 646 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  ( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3837ralimdva 2862 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  A ) )  <  x  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3938reximdva 2929 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  x ) )
408, 39mpd 15 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x )
4140ralrimiva 2868 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  x
)
42 climsqz.5 . . 3  |-  ( ph  ->  G  e.  W )
43 eqidd 2455 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
4412recnd 9611 . . 3  |-  ( ph  ->  A  e.  CC )
4511recnd 9611 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
461, 2, 42, 43, 44, 45clim2c 13413 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
4741, 46mpbird 232 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   RRcr 9480    < clt 9617    <_ cle 9618    - cmin 9796   ZZcz 10860   ZZ>=cuz 11082   RR+crp 11221   abscabs 13152    ~~> cli 13392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fl 11910  df-seq 12093  df-exp 12152  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-clim 13396  df-rlim 13397
This theorem is referenced by:  supcvg  13752  mbfi1fseqlem6  22296  sinccvglem  29305  hashnzfzclim  31471
  Copyright terms: Public domain W3C validator