MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climshftlem Structured version   Unicode version

Theorem climshftlem 13163
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
climshft.1  |-  F  e. 
_V
Assertion
Ref Expression
climshftlem  |-  ( M  e.  ZZ  ->  ( F 
~~>  A  ->  ( F  shift  M )  ~~>  A ) )

Proof of Theorem climshftlem
Dummy variables  k  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 10789 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
21ancoms 453 . . . . . 6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
3 eluzsub 10994 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
433com12 1192 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
543expa 1188 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
6 fveq2 5792 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  ( F `  m )  =  ( F `  ( n  -  M
) ) )
76eleq1d 2520 . . . . . . . . . . 11  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
86oveq1d 6208 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  -  A )  =  ( ( F `
 ( n  -  M ) )  -  A ) )
98fveq2d 5796 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  ( abs `  ( ( F `
 m )  -  A ) )  =  ( abs `  (
( F `  (
n  -  M ) )  -  A ) ) )
109breq1d 4403 . . . . . . . . . . 11  |-  ( m  =  ( n  -  M )  ->  (
( abs `  (
( F `  m
)  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
117, 10anbi12d 710 . . . . . . . . . 10  |-  ( m  =  ( n  -  M )  ->  (
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
1211rspcv 3168 . . . . . . . . 9  |-  ( ( n  -  M )  e.  ( ZZ>= `  k
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  (
( F `  (
n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) )  <  x ) ) )
135, 12syl 16 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
14 zcn 10755 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
15 eluzelz 10974 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
k  +  M ) )  ->  n  e.  ZZ )
1615zcnd 10852 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  (
k  +  M ) )  ->  n  e.  CC )
17 climshft.1 . . . . . . . . . . . . 13  |-  F  e. 
_V
1817shftval 12674 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( ( F  shift  M ) `  n )  =  ( F `  ( n  -  M
) ) )
1918eleq1d 2520 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( ( ( F 
shift  M ) `  n
)  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
2018oveq1d 6208 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( ( ( F 
shift  M ) `  n
)  -  A )  =  ( ( F `
 ( n  -  M ) )  -  A ) )
2120fveq2d 5796 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  =  ( abs `  (
( F `  (
n  -  M ) )  -  A ) ) )
2221breq1d 4403 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
2319, 22anbi12d 710 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x )  <->  ( ( F `  ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
2414, 16, 23syl2an 477 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M
) ) )  -> 
( ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x )  <->  ( ( F `  ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
2524adantlr 714 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2613, 25sylibrd 234 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x ) ) )
2726ralrimdva 2905 . . . . . 6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
28 fveq2 5792 . . . . . . . 8  |-  ( m  =  ( k  +  M )  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  ( k  +  M ) ) )
2928raleqdv 3022 . . . . . . 7  |-  ( m  =  ( k  +  M )  ->  ( A. n  e.  ( ZZ>=
`  m ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
)  <->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
3029rspcev 3172 . . . . . 6  |-  ( ( ( k  +  M
)  e.  ZZ  /\  A. n  e.  ( ZZ>= `  ( k  +  M
) ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) )
312, 27, 30syl6an 545 . . . . 5  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3231rexlimdva 2940 . . . 4  |-  ( M  e.  ZZ  ->  ( E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) )
3332ralimdv 2829 . . 3  |-  ( M  e.  ZZ  ->  ( A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3433anim2d 565 . 2  |-  ( M  e.  ZZ  ->  (
( A  e.  CC  /\ 
A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x ) )  -> 
( A  e.  CC  /\ 
A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) ) )
3517a1i 11 . . 3  |-  ( M  e.  ZZ  ->  F  e.  _V )
36 eqidd 2452 . . 3  |-  ( ( M  e.  ZZ  /\  m  e.  ZZ )  ->  ( F `  m
)  =  ( F `
 m ) )
3735, 36clim 13083 . 2  |-  ( M  e.  ZZ  ->  ( F 
~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) ) ) )
38 ovex 6218 . . . 4  |-  ( F 
shift  M )  e.  _V
3938a1i 11 . . 3  |-  ( M  e.  ZZ  ->  ( F  shift  M )  e. 
_V )
40 eqidd 2452 . . 3  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( F  shift  M ) `  n )  =  ( ( F 
shift  M ) `  n
) )
4139, 40clim 13083 . 2  |-  ( M  e.  ZZ  ->  (
( F  shift  M )  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
4234, 37, 413imtr4d 268 1  |-  ( M  e.  ZZ  ->  ( F 
~~>  A  ->  ( F  shift  M )  ~~>  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796   _Vcvv 3071   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   CCcc 9384    + caddc 9389    < clt 9522    - cmin 9699   ZZcz 10750   ZZ>=cuz 10965   RR+crp 11095    shift cshi 12666   abscabs 12834    ~~> cli 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-n0 10684  df-z 10751  df-uz 10966  df-shft 12667  df-clim 13077
This theorem is referenced by:  climshft  13165
  Copyright terms: Public domain W3C validator