Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrec Structured version   Unicode version

Theorem climrec 37253
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrec.1  |-  Z  =  ( ZZ>= `  M )
climrec.2  |-  ( ph  ->  M  e.  ZZ )
climrec.3  |-  ( ph  ->  G  ~~>  A )
climrec.4  |-  ( ph  ->  A  =/=  0 )
climrec.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
climrec.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  / 
( G `  k
) ) )
climrec.7  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
climrec  |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
Distinct variable groups:    ph, k    A, k    k, G    k, H    k, Z
Allowed substitution hints:    M( k)    W( k)

Proof of Theorem climrec
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrec.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climrec.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climrec.3 . . . . 5  |-  ( ph  ->  G  ~~>  A )
4 climcl 13541 . . . . 5  |-  ( G  ~~>  A  ->  A  e.  CC )
53, 4syl 17 . . . 4  |-  ( ph  ->  A  e.  CC )
6 climrec.4 . . . . . 6  |-  ( ph  ->  A  =/=  0 )
76neneqd 2632 . . . . 5  |-  ( ph  ->  -.  A  =  0 )
8 c0ex 9636 . . . . . 6  |-  0  e.  _V
98elsnc2 4033 . . . . 5  |-  ( A  e.  { 0 }  <-> 
A  =  0 )
107, 9sylnibr 306 . . . 4  |-  ( ph  ->  -.  A  e.  {
0 } )
115, 10eldifd 3453 . . 3  |-  ( ph  ->  A  e.  ( CC 
\  { 0 } ) )
12 eqidd 2430 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) )
13 simpr 462 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( CC  \  {
0 } ) )  /\  w  =  z )  ->  w  =  z )
1413oveq2d 6321 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( CC  \  {
0 } ) )  /\  w  =  z )  ->  ( 1  /  w )  =  ( 1  /  z
) )
15 simpr 462 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  e.  ( CC 
\  { 0 } ) )
1615eldifad 3454 . . . . . 6  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  e.  CC )
17 eldifsni 4129 . . . . . . 7  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  =/=  0
)
1817adantl 467 . . . . . 6  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  =/=  0 )
1916, 18reccld 10375 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  z
)  e.  CC )
2012, 14, 15, 19fvmptd 5970 . . . 4  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  =  ( 1  / 
z ) )
2120, 19eqeltrd 2517 . . 3  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  e.  CC )
22 climrec.7 . . 3  |-  ( ph  ->  H  e.  W )
23 eqid 2429 . . . . . 6  |-  ( if ( 1  <_  (
( abs `  A
)  x.  x ) ,  1 ,  ( ( abs `  A
)  x.  x ) )  x.  ( ( abs `  A )  /  2 ) )  =  ( if ( 1  <_  ( ( abs `  A )  x.  x ) ,  1 ,  ( ( abs `  A )  x.  x
) )  x.  (
( abs `  A
)  /  2 ) )
2423reccn2 13638 . . . . 5  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) )
2511, 24sylan 473 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) )
26 eqidd 2430 . . . . . . . . . . . 12  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) )
27 simpr 462 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( CC 
\  { 0 } )  /\  w  =  z )  ->  w  =  z )
2827oveq2d 6321 . . . . . . . . . . . 12  |-  ( ( z  e.  ( CC 
\  { 0 } )  /\  w  =  z )  ->  (
1  /  w )  =  ( 1  / 
z ) )
29 id 23 . . . . . . . . . . . 12  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  e.  ( CC  \  { 0 } ) )
30 eldifi 3593 . . . . . . . . . . . . 13  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  e.  CC )
3130, 17reccld 10375 . . . . . . . . . . . 12  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( 1  / 
z )  e.  CC )
3226, 28, 29, 31fvmptd 5970 . . . . . . . . . . 11  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  =  ( 1  /  z ) )
3332ad2antlr 731 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  =  ( 1  /  z ) )
34 eqidd 2430 . . . . . . . . . . . 12  |-  ( ph  ->  ( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) )
35 simpr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  =  A )  ->  w  =  A )
3635oveq2d 6321 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  =  A )  ->  (
1  /  w )  =  ( 1  /  A ) )
375, 6reccld 10375 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  /  A
)  e.  CC )
3834, 36, 11, 37fvmptd 5970 . . . . . . . . . . 11  |-  ( ph  ->  ( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  A )  =  ( 1  /  A ) )
3938ad4antr 736 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
)  =  ( 1  /  A ) )
4033, 39oveq12d 6323 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  z )  -  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 A ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4140fveq2d 5885 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4229ad2antlr 731 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  z  e.  ( CC  \  { 0 } ) )
43 simpr 462 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
z  -  A ) )  <  y )
44 simpllr 767 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( z  e.  ( CC  \  {
0 } )  -> 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )
4542, 43, 44mp2d 46 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )
4641, 45eqbrtrd 4446 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x )
4746exp41 613 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
z  e.  ( CC 
\  { 0 } )  ->  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( 1  / 
z )  -  (
1  /  A ) ) )  <  x
) )  ->  (
z  e.  ( CC 
\  { 0 } )  ->  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  -  ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  A ) ) )  <  x ) ) ) )
4847ralimdv2 2839 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. z  e.  ( CC  \  { 0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )  ->  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A ) )  <  y  ->  ( abs `  ( ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  z )  -  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 A ) ) )  <  x ) ) )
4948reximdv 2906 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )  ->  E. y  e.  RR+  A. z  e.  ( CC 
\  { 0 } ) ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) ) )
5025, 49mpd 15 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) )
51 climrec.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
52 climrec.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  / 
( G `  k
) ) )
53 eqidd 2430 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) )
54 oveq2 6313 . . . . . 6  |-  ( w  =  ( G `  k )  ->  (
1  /  w )  =  ( 1  / 
( G `  k
) ) )
5554adantl 467 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  w  =  ( G `  k ) )  -> 
( 1  /  w
)  =  ( 1  /  ( G `  k ) ) )
5651eldifad 3454 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
57 eldifsni 4129 . . . . . . 7  |-  ( ( G `  k )  e.  ( CC  \  { 0 } )  ->  ( G `  k )  =/=  0
)
5851, 57syl 17 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =/=  0 )
5956, 58reccld 10375 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
1  /  ( G `
 k ) )  e.  CC )
6053, 55, 51, 59fvmptd 5970 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 ( G `  k ) )  =  ( 1  /  ( G `  k )
) )
6152, 60eqtr4d 2473 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  ( G `  k )
) )
621, 2, 11, 21, 3, 22, 50, 51, 61climcn1 13633 . 2  |-  ( ph  ->  H  ~~>  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) )
6362, 38breqtrd 4450 1  |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783    \ cdif 3439   ifcif 3915   {csn 4002   class class class wbr 4426    |-> cmpt 4484   ` cfv 5601  (class class class)co 6305   CCcc 9536   0cc0 9538   1c1 9539    x. cmul 9543    < clt 9674    <_ cle 9675    - cmin 9859    / cdiv 10268   2c2 10659   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   abscabs 13276    ~~> cli 13526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530
This theorem is referenced by:  climrecf  37260  wallispi  37501
  Copyright terms: Public domain W3C validator