Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrec Structured version   Unicode version

Theorem climrec 31173
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrec.1  |-  Z  =  ( ZZ>= `  M )
climrec.2  |-  ( ph  ->  M  e.  ZZ )
climrec.3  |-  ( ph  ->  G  ~~>  A )
climrec.4  |-  ( ph  ->  A  =/=  0 )
climrec.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
climrec.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  / 
( G `  k
) ) )
climrec.7  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
climrec  |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
Distinct variable groups:    ph, k    A, k    k, G    k, H    k, Z
Allowed substitution hints:    M( k)    W( k)

Proof of Theorem climrec
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrec.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climrec.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climrec.3 . . . . 5  |-  ( ph  ->  G  ~~>  A )
4 climcl 13285 . . . . 5  |-  ( G  ~~>  A  ->  A  e.  CC )
53, 4syl 16 . . . 4  |-  ( ph  ->  A  e.  CC )
6 climrec.4 . . . . . 6  |-  ( ph  ->  A  =/=  0 )
76neneqd 2669 . . . . 5  |-  ( ph  ->  -.  A  =  0 )
8 c0ex 9590 . . . . . 6  |-  0  e.  _V
98elsnc2 4058 . . . . 5  |-  ( A  e.  { 0 }  <-> 
A  =  0 )
107, 9sylnibr 305 . . . 4  |-  ( ph  ->  -.  A  e.  {
0 } )
115, 10eldifd 3487 . . 3  |-  ( ph  ->  A  e.  ( CC 
\  { 0 } ) )
12 eqidd 2468 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) )
13 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( CC  \  {
0 } ) )  /\  w  =  z )  ->  w  =  z )
1413oveq2d 6300 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( CC  \  {
0 } ) )  /\  w  =  z )  ->  ( 1  /  w )  =  ( 1  /  z
) )
15 simpr 461 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  e.  ( CC 
\  { 0 } ) )
1615eldifad 3488 . . . . . 6  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  e.  CC )
17 eldifsni 4153 . . . . . . 7  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  =/=  0
)
1817adantl 466 . . . . . 6  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  =/=  0 )
1916, 18reccld 10313 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  z
)  e.  CC )
2012, 14, 15, 19fvmptd 5955 . . . 4  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  =  ( 1  / 
z ) )
2120, 19eqeltrd 2555 . . 3  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  e.  CC )
22 climrec.7 . . 3  |-  ( ph  ->  H  e.  W )
23 eqid 2467 . . . . . 6  |-  ( if ( 1  <_  (
( abs `  A
)  x.  x ) ,  1 ,  ( ( abs `  A
)  x.  x ) )  x.  ( ( abs `  A )  /  2 ) )  =  ( if ( 1  <_  ( ( abs `  A )  x.  x ) ,  1 ,  ( ( abs `  A )  x.  x
) )  x.  (
( abs `  A
)  /  2 ) )
2423reccn2 13382 . . . . 5  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) )
2511, 24sylan 471 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) )
26 eqidd 2468 . . . . . . . . . . . 12  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) )
27 simpr 461 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( CC 
\  { 0 } )  /\  w  =  z )  ->  w  =  z )
2827oveq2d 6300 . . . . . . . . . . . 12  |-  ( ( z  e.  ( CC 
\  { 0 } )  /\  w  =  z )  ->  (
1  /  w )  =  ( 1  / 
z ) )
29 id 22 . . . . . . . . . . . 12  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  e.  ( CC  \  { 0 } ) )
30 eldifi 3626 . . . . . . . . . . . . 13  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  e.  CC )
3130, 17reccld 10313 . . . . . . . . . . . 12  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( 1  / 
z )  e.  CC )
3226, 28, 29, 31fvmptd 5955 . . . . . . . . . . 11  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  =  ( 1  /  z ) )
3332ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  =  ( 1  /  z ) )
34 eqidd 2468 . . . . . . . . . . . 12  |-  ( ph  ->  ( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) )
35 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  =  A )  ->  w  =  A )
3635oveq2d 6300 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  =  A )  ->  (
1  /  w )  =  ( 1  /  A ) )
375, 6reccld 10313 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  /  A
)  e.  CC )
3834, 36, 11, 37fvmptd 5955 . . . . . . . . . . 11  |-  ( ph  ->  ( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  A )  =  ( 1  /  A ) )
3938ad4antr 731 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
)  =  ( 1  /  A ) )
4033, 39oveq12d 6302 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  z )  -  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 A ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4140fveq2d 5870 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4229ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  z  e.  ( CC  \  { 0 } ) )
43 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
z  -  A ) )  <  y )
44 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( z  e.  ( CC  \  {
0 } )  -> 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )
4542, 43, 44mp2d 45 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )
4641, 45eqbrtrd 4467 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x )
4746exp41 610 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
z  e.  ( CC 
\  { 0 } )  ->  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( 1  / 
z )  -  (
1  /  A ) ) )  <  x
) )  ->  (
z  e.  ( CC 
\  { 0 } )  ->  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  -  ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  A ) ) )  <  x ) ) ) )
4847ralimdv2 2871 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. z  e.  ( CC  \  { 0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )  ->  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A ) )  <  y  ->  ( abs `  ( ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  z )  -  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 A ) ) )  <  x ) ) )
4948reximdv 2937 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )  ->  E. y  e.  RR+  A. z  e.  ( CC 
\  { 0 } ) ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) ) )
5025, 49mpd 15 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) )
51 climrec.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
52 climrec.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  / 
( G `  k
) ) )
53 eqidd 2468 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) )
54 oveq2 6292 . . . . . 6  |-  ( w  =  ( G `  k )  ->  (
1  /  w )  =  ( 1  / 
( G `  k
) ) )
5554adantl 466 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  w  =  ( G `  k ) )  -> 
( 1  /  w
)  =  ( 1  /  ( G `  k ) ) )
5651eldifad 3488 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
57 eldifsni 4153 . . . . . . 7  |-  ( ( G `  k )  e.  ( CC  \  { 0 } )  ->  ( G `  k )  =/=  0
)
5851, 57syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =/=  0 )
5956, 58reccld 10313 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
1  /  ( G `
 k ) )  e.  CC )
6053, 55, 51, 59fvmptd 5955 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 ( G `  k ) )  =  ( 1  /  ( G `  k )
) )
6152, 60eqtr4d 2511 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  ( G `  k )
) )
621, 2, 11, 21, 3, 22, 50, 51, 61climcn1 13377 . 2  |-  ( ph  ->  H  ~~>  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) )
6362, 38breqtrd 4471 1  |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    \ cdif 3473   ifcif 3939   {csn 4027   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588  (class class class)co 6284   CCcc 9490   0cc0 9492   1c1 9493    x. cmul 9497    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   2c2 10585   ZZcz 10864   ZZ>=cuz 11082   RR+crp 11220   abscabs 13030    ~~> cli 13270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274
This theorem is referenced by:  climrecf  31179  wallispi  31398
  Copyright terms: Public domain W3C validator