Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climneg Structured version   Unicode version

Theorem climneg 31379
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climneg.1  |-  F/ k
ph
climneg.2  |-  F/_ k F
climneg.3  |-  Z  =  ( ZZ>= `  M )
climneg.4  |-  ( ph  ->  M  e.  ZZ )
climneg.5  |-  ( ph  ->  F  ~~>  A )
climneg.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
climneg  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  -u A
)
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    F( k)    M( k)

Proof of Theorem climneg
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climneg.1 . . 3  |-  F/ k
ph
2 nfmpt1 4536 . . 3  |-  F/_ k
( k  e.  Z  |-> 
-u 1 )
3 climneg.2 . . 3  |-  F/_ k F
4 nfmpt1 4536 . . 3  |-  F/_ k
( k  e.  Z  |-> 
-u ( F `  k ) )
5 climneg.3 . . 3  |-  Z  =  ( ZZ>= `  M )
6 climneg.4 . . 3  |-  ( ph  ->  M  e.  ZZ )
7 fvex 5876 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
85, 7eqeltri 2551 . . . . . 6  |-  Z  e. 
_V
98mptex 6132 . . . . 5  |-  ( k  e.  Z  |->  -u 1
)  e.  _V
109a1i 11 . . . 4  |-  ( ph  ->  ( k  e.  Z  |-> 
-u 1 )  e. 
_V )
11 ax-1cn 9551 . . . . . 6  |-  1  e.  CC
1211a1i 11 . . . . 5  |-  ( ph  ->  1  e.  CC )
1312negcld 9918 . . . 4  |-  ( ph  -> 
-u 1  e.  CC )
14 eqidd 2468 . . . . . 6  |-  ( j  e.  Z  ->  (
k  e.  Z  |->  -u
1 )  =  ( k  e.  Z  |->  -u
1 ) )
15 eqidd 2468 . . . . . 6  |-  ( ( j  e.  Z  /\  k  =  j )  -> 
-u 1  =  -u
1 )
16 id 22 . . . . . 6  |-  ( j  e.  Z  ->  j  e.  Z )
1711a1i 11 . . . . . . 7  |-  ( j  e.  Z  ->  1  e.  CC )
1817negcld 9918 . . . . . 6  |-  ( j  e.  Z  ->  -u 1  e.  CC )
1914, 15, 16, 18fvmptd 5956 . . . . 5  |-  ( j  e.  Z  ->  (
( k  e.  Z  |-> 
-u 1 ) `  j )  =  -u
1 )
2019adantl 466 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (
( k  e.  Z  |-> 
-u 1 ) `  j )  =  -u
1 )
215, 6, 10, 13, 20climconst 13332 . . 3  |-  ( ph  ->  ( k  e.  Z  |-> 
-u 1 )  ~~>  -u 1
)
228mptex 6132 . . . 4  |-  ( k  e.  Z  |->  -u ( F `  k )
)  e.  _V
2322a1i 11 . . 3  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  e. 
_V )
24 climneg.5 . . 3  |-  ( ph  ->  F  ~~>  A )
25 neg1cn 10640 . . . . . 6  |-  -u 1  e.  CC
26 eqid 2467 . . . . . . 7  |-  ( k  e.  Z  |->  -u 1
)  =  ( k  e.  Z  |->  -u 1
)
2726fvmpt2 5958 . . . . . 6  |-  ( ( k  e.  Z  /\  -u 1  e.  CC )  ->  ( ( k  e.  Z  |->  -u 1
) `  k )  =  -u 1 )
2825, 27mpan2 671 . . . . 5  |-  ( k  e.  Z  ->  (
( k  e.  Z  |-> 
-u 1 ) `  k )  =  -u
1 )
2928, 25syl6eqel 2563 . . . 4  |-  ( k  e.  Z  ->  (
( k  e.  Z  |-> 
-u 1 ) `  k )  e.  CC )
3029adantl 466 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |-> 
-u 1 ) `  k )  e.  CC )
31 climneg.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
32 simpr 461 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
3331negcld 9918 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  -u ( F `  k )  e.  CC )
34 eqid 2467 . . . . . 6  |-  ( k  e.  Z  |->  -u ( F `  k )
)  =  ( k  e.  Z  |->  -u ( F `  k )
)
3534fvmpt2 5958 . . . . 5  |-  ( ( k  e.  Z  /\  -u ( F `  k
)  e.  CC )  ->  ( ( k  e.  Z  |->  -u ( F `  k )
) `  k )  =  -u ( F `  k ) )
3632, 33, 35syl2anc 661 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |-> 
-u ( F `  k ) ) `  k )  =  -u ( F `  k ) )
3731mulm1d 10009 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( -u 1  x.  ( F `
 k ) )  =  -u ( F `  k ) )
3828eqcomd 2475 . . . . . 6  |-  ( k  e.  Z  ->  -u 1  =  ( ( k  e.  Z  |->  -u 1
) `  k )
)
3938adantl 466 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  -u 1  =  ( ( k  e.  Z  |->  -u 1
) `  k )
)
4039oveq1d 6300 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( -u 1  x.  ( F `
 k ) )  =  ( ( ( k  e.  Z  |->  -u
1 ) `  k
)  x.  ( F `
 k ) ) )
4136, 37, 403eqtr2d 2514 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |-> 
-u ( F `  k ) ) `  k )  =  ( ( ( k  e.  Z  |->  -u 1 ) `  k )  x.  ( F `  k )
) )
421, 2, 3, 4, 5, 6, 21, 23, 24, 30, 31, 41climmulf 31373 . 2  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  ( -u
1  x.  A ) )
43 climcl 13288 . . . 4  |-  ( F  ~~>  A  ->  A  e.  CC )
4424, 43syl 16 . . 3  |-  ( ph  ->  A  e.  CC )
4544mulm1d 10009 . 2  |-  ( ph  ->  ( -u 1  x.  A )  =  -u A )
4642, 45breqtrd 4471 1  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  -u A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379   F/wnf 1599    e. wcel 1767   F/_wnfc 2615   _Vcvv 3113   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588  (class class class)co 6285   CCcc 9491   1c1 9494    x. cmul 9498   -ucneg 9807   ZZcz 10865   ZZ>=cuz 11083    ~~> cli 13273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-rp 11222  df-seq 12077  df-exp 12136  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-clim 13277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator