MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmulc2 Structured version   Unicode version

Theorem climmulc2 13113
Description: Limit of a sequence multiplied by a constant  C. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climaddc1.5  |-  ( ph  ->  C  e.  CC )
climaddc1.6  |-  ( ph  ->  G  e.  W )
climaddc1.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climmulc2.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
Assertion
Ref Expression
climmulc2  |-  ( ph  ->  G  ~~>  ( C  x.  A ) )
Distinct variable groups:    C, k    k, F    ph, k    A, k   
k, G    k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climmulc2
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climaddc1.5 . . 3  |-  ( ph  ->  C  e.  CC )
4 0z 10656 . . 3  |-  0  e.  ZZ
5 uzssz 10879 . . . 4  |-  ( ZZ>= ` 
0 )  C_  ZZ
6 zex 10654 . . . 4  |-  ZZ  e.  _V
75, 6climconst2 13025 . . 3  |-  ( ( C  e.  CC  /\  0  e.  ZZ )  ->  ( ZZ  X.  { C } )  ~~>  C )
83, 4, 7sylancl 662 . 2  |-  ( ph  ->  ( ZZ  X.  { C } )  ~~>  C )
9 climaddc1.6 . 2  |-  ( ph  ->  G  e.  W )
10 climadd.4 . 2  |-  ( ph  ->  F  ~~>  A )
11 eluzelz 10869 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1211, 1eleq2s 2534 . . . 4  |-  ( k  e.  Z  ->  k  e.  ZZ )
13 fvconst2g 5930 . . . 4  |-  ( ( C  e.  CC  /\  k  e.  ZZ )  ->  ( ( ZZ  X.  { C } ) `  k )  =  C )
143, 12, 13syl2an 477 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  =  C )
153adantr 465 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  C  e.  CC )
1614, 15eqeltrd 2516 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  e.  CC )
17 climaddc1.7 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climmulc2.h . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
1914oveq1d 6105 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ZZ  X.  { C } ) `  k )  x.  ( F `  k )
)  =  ( C  x.  ( F `  k ) ) )
2018, 19eqtr4d 2477 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( ( ZZ  X.  { C } ) `  k
)  x.  ( F `
 k ) ) )
211, 2, 8, 9, 10, 16, 17, 20climmul 13109 1  |-  ( ph  ->  G  ~~>  ( C  x.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {csn 3876   class class class wbr 4291    X. cxp 4837   ` cfv 5417  (class class class)co 6090   CCcc 9279   0cc0 9281    x. cmul 9286   ZZcz 10645   ZZ>=cuz 10860    ~~> cli 12961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-sup 7690  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-n0 10579  df-z 10646  df-uz 10861  df-rp 10991  df-seq 11806  df-exp 11865  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-clim 12965
This theorem is referenced by:  isermulc2  13134  geolim  13329  geo2lim  13334  itg1climres  21191  itg2monolem1  21227  circum  27318  clim2prod  27402  clim2div  27403  faclimlem2  27549  geomcau  28653  wallispi  29863  stirlinglem1  29867  stirlinglem7  29873  stirlinglem15  29881
  Copyright terms: Public domain W3C validator