Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinff Structured version   Unicode version

Theorem climinff 31181
Description: A version of climinf 31176 using bound-variable hypotheses instead of distinct variable conditions (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climinff.1  |-  F/ k
ph
climinff.2  |-  F/_ k F
climinff.3  |-  Z  =  ( ZZ>= `  M )
climinff.4  |-  ( ph  ->  M  e.  ZZ )
climinff.5  |-  ( ph  ->  F : Z --> RR )
climinff.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
climinff.7  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) )
Assertion
Ref Expression
climinff  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  `'  <  ) )
Distinct variable groups:    x, k    x, F    k, Z, x
Allowed substitution hints:    ph( x, k)    F( k)    M( x, k)

Proof of Theorem climinff
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climinff.3 . 2  |-  Z  =  ( ZZ>= `  M )
2 climinff.4 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climinff.5 . 2  |-  ( ph  ->  F : Z --> RR )
4 climinff.1 . . . . 5  |-  F/ k
ph
5 nfv 1683 . . . . 5  |-  F/ k  j  e.  Z
64, 5nfan 1875 . . . 4  |-  F/ k ( ph  /\  j  e.  Z )
7 climinff.2 . . . . . 6  |-  F/_ k F
8 nfcv 2629 . . . . . 6  |-  F/_ k
( j  +  1 )
97, 8nffv 5873 . . . . 5  |-  F/_ k
( F `  (
j  +  1 ) )
10 nfcv 2629 . . . . 5  |-  F/_ k  <_
11 nfcv 2629 . . . . . 6  |-  F/_ k
j
127, 11nffv 5873 . . . . 5  |-  F/_ k
( F `  j
)
139, 10, 12nfbr 4491 . . . 4  |-  F/ k ( F `  (
j  +  1 ) )  <_  ( F `  j )
146, 13nfim 1867 . . 3  |-  F/ k ( ( ph  /\  j  e.  Z )  ->  ( F `  (
j  +  1 ) )  <_  ( F `  j ) )
15 eleq1 2539 . . . . 5  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
1615anbi2d 703 . . . 4  |-  ( k  =  j  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  j  e.  Z ) ) )
17 oveq1 6291 . . . . . 6  |-  ( k  =  j  ->  (
k  +  1 )  =  ( j  +  1 ) )
1817fveq2d 5870 . . . . 5  |-  ( k  =  j  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( j  +  1 ) ) )
19 fveq2 5866 . . . . 5  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
2018, 19breq12d 4460 . . . 4  |-  ( k  =  j  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( j  +  1 ) )  <_  ( F `  j )
) )
2116, 20imbi12d 320 . . 3  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  Z )  ->  ( F `  (
k  +  1 ) )  <_  ( F `  k ) )  <->  ( ( ph  /\  j  e.  Z
)  ->  ( F `  ( j  +  1 ) )  <_  ( F `  j )
) ) )
22 climinff.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
2314, 21, 22chvar 1982 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  ( j  +  1 ) )  <_  ( F `  j ) )
24 nfcv 2629 . . . . 5  |-  F/_ k RR
255nfci 2618 . . . . . 6  |-  F/_ k Z
26 nfcv 2629 . . . . . . 7  |-  F/_ k
x
2726, 10, 12nfbr 4491 . . . . . 6  |-  F/ k  x  <_  ( F `  j )
2825, 27nfral 2850 . . . . 5  |-  F/ k A. j  e.  Z  x  <_  ( F `  j )
2924, 28nfrex 2927 . . . 4  |-  F/ k E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j )
304, 29nfim 1867 . . 3  |-  F/ k ( ph  ->  E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j )
)
31 nfv 1683 . . . . . . 7  |-  F/ j  x  <_  ( F `  k )
3219breq2d 4459 . . . . . . 7  |-  ( k  =  j  ->  (
x  <_  ( F `  k )  <->  x  <_  ( F `  j ) ) )
3331, 27, 32cbvral 3084 . . . . . 6  |-  ( A. k  e.  Z  x  <_  ( F `  k
)  <->  A. j  e.  Z  x  <_  ( F `  j ) )
3433a1i 11 . . . . 5  |-  ( k  =  j  ->  ( A. k  e.  Z  x  <_  ( F `  k )  <->  A. j  e.  Z  x  <_  ( F `  j ) ) )
3534rexbidv 2973 . . . 4  |-  ( k  =  j  ->  ( E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k )  <->  E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j )
) )
3635imbi2d 316 . . 3  |-  ( k  =  j  ->  (
( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k )
)  <->  ( ph  ->  E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j
) ) ) )
37 climinff.7 . . 3  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) )
3830, 36, 37chvar 1982 . 2  |-  ( ph  ->  E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j ) )
391, 2, 3, 23, 38climinf 31176 1  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  `'  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   F/wnf 1599    e. wcel 1767   F/_wnfc 2615   A.wral 2814   E.wrex 2815   class class class wbr 4447   `'ccnv 4998   ran crn 5000   -->wf 5584   ` cfv 5588  (class class class)co 6284   supcsup 7900   RRcr 9491   1c1 9493    + caddc 9495    < clt 9628    <_ cle 9629   ZZcz 10864   ZZ>=cuz 11082    ~~> cli 13270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fz 11673  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator