Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf Structured version   Unicode version

Theorem climinf 31375
Description: A bounded monotonic non increasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climinf.3  |-  Z  =  ( ZZ>= `  M )
climinf.4  |-  ( ph  ->  M  e.  ZZ )
climinf.5  |-  ( ph  ->  F : Z --> RR )
climinf.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
climinf.7  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) )
Assertion
Ref Expression
climinf  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  `'  <  ) )
Distinct variable groups:    ph, k    x, k, F    k, Z, x
Allowed substitution hints:    ph( x)    M( x, k)

Proof of Theorem climinf
Dummy variables  j  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf.5 . . . . . . . . . . . 12  |-  ( ph  ->  F : Z --> RR )
2 frn 5737 . . . . . . . . . . . 12  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
31, 2syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ran  F  C_  RR )
4 ffn 5731 . . . . . . . . . . . . . 14  |-  ( F : Z --> RR  ->  F  Fn  Z )
51, 4syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  Z )
6 climinf.4 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ZZ )
7 uzid 11097 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
86, 7syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
9 climinf.3 . . . . . . . . . . . . . 14  |-  Z  =  ( ZZ>= `  M )
108, 9syl6eleqr 2566 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  Z )
11 fnfvelrn 6019 . . . . . . . . . . . . 13  |-  ( ( F  Fn  Z  /\  M  e.  Z )  ->  ( F `  M
)  e.  ran  F
)
125, 10, 11syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  M
)  e.  ran  F
)
13 ne0i 3791 . . . . . . . . . . . 12  |-  ( ( F `  M )  e.  ran  F  ->  ran  F  =/=  (/) )
1412, 13syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ran  F  =/=  (/) )
15 climinf.7 . . . . . . . . . . . 12  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) )
16 breq2 4451 . . . . . . . . . . . . . . 15  |-  ( y  =  ( F `  k )  ->  (
x  <_  y  <->  x  <_  ( F `  k ) ) )
1716ralrn 6025 . . . . . . . . . . . . . 14  |-  ( F  Fn  Z  ->  ( A. y  e.  ran  F  x  <_  y  <->  A. k  e.  Z  x  <_  ( F `  k ) ) )
1817rexbidv 2973 . . . . . . . . . . . . 13  |-  ( F  Fn  Z  ->  ( E. x  e.  RR  A. y  e.  ran  F  x  <_  y  <->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k )
) )
195, 18syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. x  e.  RR  A. y  e. 
ran  F  x  <_  y  <->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) ) )
2015, 19mpbird 232 . . . . . . . . . . 11  |-  ( ph  ->  E. x  e.  RR  A. y  e.  ran  F  x  <_  y )
213, 14, 203jca 1176 . . . . . . . . . 10  |-  ( ph  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  x  <_  y ) )
2221adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ran  F 
C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  x  <_  y ) )
23 infmrcl 10523 . . . . . . . . 9  |-  ( ( ran  F  C_  RR  /\ 
ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ran  F  x  <_ 
y )  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )
2422, 23syl 16 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )
25 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
2624, 25ltaddrpd 11286 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  sup ( ran  F ,  RR ,  `'  <  )  <  ( sup ( ran  F ,  RR ,  `'  <  )  +  y ) )
27 rpre 11227 . . . . . . . . . 10  |-  ( y  e.  RR+  ->  y  e.  RR )
2827adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR )
2924, 28readdcld 9624 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  e.  RR )
30 infrglb 31367 . . . . . . . 8  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  x  <_  y )  /\  ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  e.  RR )  ->  ( sup ( ran  F ,  RR ,  `'  <  )  <  ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  <->  E. k  e.  ran  F  k  <  ( sup ( ran  F ,  RR ,  `'  <  )  +  y ) ) )
3122, 29, 30syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  `'  <  )  < 
( sup ( ran 
F ,  RR ,  `'  <  )  +  y )  <->  E. k  e.  ran  F  k  <  ( sup ( ran  F ,  RR ,  `'  <  )  +  y ) ) )
3226, 31mpbid 210 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. k  e.  ran  F  k  < 
( sup ( ran 
F ,  RR ,  `'  <  )  +  y ) )
333sselda 3504 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ran  F )  ->  k  e.  RR )
3433adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
k  e.  RR )
3524adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )
3627ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
y  e.  RR )
3735, 36readdcld 9624 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( sup ( ran 
F ,  RR ,  `'  <  )  +  y )  e.  RR )
3834, 37, 36ltsub1d 10162 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( k  <  ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  <->  ( k  -  y )  < 
( ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  -  y ) ) )
393, 14, 20, 23syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ph  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )
4039recnd 9623 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  CC )
4140ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  CC )
4236recnd 9623 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
y  e.  CC )
4341, 42pncand 9932 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  -  y )  =  sup ( ran 
F ,  RR ,  `'  <  ) )
4443breq2d 4459 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( ( k  -  y )  <  (
( sup ( ran 
F ,  RR ,  `'  <  )  +  y )  -  y )  <-> 
( k  -  y
)  <  sup ( ran  F ,  RR ,  `'  <  ) ) )
4538, 44bitrd 253 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( k  <  ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  <->  ( k  -  y )  <  sup ( ran  F ,  RR ,  `'  <  ) ) )
4645biimpd 207 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  ran  F )  -> 
( k  <  ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  -> 
( k  -  y
)  <  sup ( ran  F ,  RR ,  `'  <  ) ) )
4746reximdva 2938 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. k  e.  ran  F  k  <  ( sup ( ran  F ,  RR ,  `'  <  )  +  y )  ->  E. k  e.  ran  F ( k  -  y )  <  sup ( ran  F ,  RR ,  `'  <  ) ) )
4832, 47mpd 15 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. k  e.  ran  F ( k  -  y )  <  sup ( ran  F ,  RR ,  `'  <  ) )
49 oveq1 6292 . . . . . . . . 9  |-  ( k  =  ( F `  j )  ->  (
k  -  y )  =  ( ( F `
 j )  -  y ) )
5049breq1d 4457 . . . . . . . 8  |-  ( k  =  ( F `  j )  ->  (
( k  -  y
)  <  sup ( ran  F ,  RR ,  `'  <  )  <->  ( ( F `  j )  -  y )  <  sup ( ran  F ,  RR ,  `'  <  ) ) )
5150rexrn 6024 . . . . . . 7  |-  ( F  Fn  Z  ->  ( E. k  e.  ran  F ( k  -  y
)  <  sup ( ran  F ,  RR ,  `'  <  )  <->  E. j  e.  Z  ( ( F `  j )  -  y )  <  sup ( ran  F ,  RR ,  `'  <  ) ) )
525, 51syl 16 . . . . . 6  |-  ( ph  ->  ( E. k  e. 
ran  F ( k  -  y )  <  sup ( ran  F ,  RR ,  `'  <  )  <->  E. j  e.  Z  ( ( F `  j )  -  y
)  <  sup ( ran  F ,  RR ,  `'  <  ) ) )
5352biimpa 484 . . . . 5  |-  ( (
ph  /\  E. k  e.  ran  F ( k  -  y )  <  sup ( ran  F ,  RR ,  `'  <  ) )  ->  E. j  e.  Z  ( ( F `  j )  -  y )  <  sup ( ran  F ,  RR ,  `'  <  ) )
5448, 53syldan 470 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  ( ( F `  j )  -  y )  <  sup ( ran  F ,  RR ,  `'  <  ) )
551adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : Z
--> RR )
569uztrn2 11100 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
57 ffvelrn 6020 . . . . . . . . . . 11  |-  ( ( F : Z --> RR  /\  k  e.  Z )  ->  ( F `  k
)  e.  RR )
5855, 56, 57syl2an 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  RR )
59 simpl 457 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  e.  Z )
60 ffvelrn 6020 . . . . . . . . . . 11  |-  ( ( F : Z --> RR  /\  j  e.  Z )  ->  ( F `  j
)  e.  RR )
6155, 59, 60syl2an 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  j )  e.  RR )
6239ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )
63 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
64 fzssuz 11725 . . . . . . . . . . . . . 14  |-  ( j ... k )  C_  ( ZZ>= `  j )
65 uzss 11103 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  ( ZZ>=
`  M ) )
6665, 9syl6sseqr 3551 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  Z
)
6766, 9eleq2s 2575 . . . . . . . . . . . . . . 15  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  C_  Z )
6867ad2antrl 727 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ZZ>= `  j
)  C_  Z )
6964, 68syl5ss 3515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... k )  C_  Z
)
70 ffvelrn 6020 . . . . . . . . . . . . . . . 16  |-  ( ( F : Z --> RR  /\  n  e.  Z )  ->  ( F `  n
)  e.  RR )
7170ralrimiva 2878 . . . . . . . . . . . . . . 15  |-  ( F : Z --> RR  ->  A. n  e.  Z  ( F `  n )  e.  RR )
721, 71syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  Z  ( F `  n )  e.  RR )
7372ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  Z  ( F `  n )  e.  RR )
74 ssralv 3564 . . . . . . . . . . . . 13  |-  ( ( j ... k ) 
C_  Z  ->  ( A. n  e.  Z  ( F `  n )  e.  RR  ->  A. n  e.  ( j ... k
) ( F `  n )  e.  RR ) )
7569, 73, 74sylc 60 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  ( j ... k ) ( F `  n
)  e.  RR )
7675r19.21bi 2833 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... k
) )  ->  ( F `  n )  e.  RR )
77 fzssuz 11725 . . . . . . . . . . . . . 14  |-  ( j ... ( k  - 
1 ) )  C_  ( ZZ>= `  j )
7877, 68syl5ss 3515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... ( k  -  1 ) )  C_  Z
)
7978sselda 3504 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  n  e.  Z )
80 climinf.6 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
8180ralrimiva 2878 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
8281ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. k  e.  Z  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
83 oveq1 6292 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
8483fveq2d 5870 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
85 fveq2 5866 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
8684, 85breq12d 4460 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
) )
8786rspccva 3213 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  Z  ( F `  ( k  +  1 ) )  <_  ( F `  k )  /\  n  e.  Z )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n ) )
8882, 87sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  Z )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n ) )
8979, 88syldan 470 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n ) )
9063, 76, 89monoord2 12107 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  <_  ( F `  j )
)
9158, 61, 62, 90lesub1dd 10169 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( F `
 k )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <_  ( ( F `  j )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
9258, 62resubcld 9988 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( F `
 k )  -  sup ( ran  F ,  RR ,  `'  <  ) )  e.  RR )
9361, 62resubcld 9988 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( F `
 j )  -  sup ( ran  F ,  RR ,  `'  <  ) )  e.  RR )
9427ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  y  e.  RR )
95 lelttr 9676 . . . . . . . . . 10  |-  ( ( ( ( F `  k )  -  sup ( ran  F ,  RR ,  `'  <  ) )  e.  RR  /\  (
( F `  j
)  -  sup ( ran  F ,  RR ,  `'  <  ) )  e.  RR  /\  y  e.  RR )  ->  (
( ( ( F `
 k )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <_  ( ( F `  j )  -  sup ( ran  F ,  RR ,  `'  <  ) )  /\  ( ( F `  j )  -  sup ( ran 
F ,  RR ,  `'  <  ) )  < 
y )  ->  (
( F `  k
)  -  sup ( ran  F ,  RR ,  `'  <  ) )  < 
y ) )
9692, 93, 94, 95syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( ( F `  k
)  -  sup ( ran  F ,  RR ,  `'  <  ) )  <_ 
( ( F `  j )  -  sup ( ran  F ,  RR ,  `'  <  ) )  /\  ( ( F `
 j )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <  y )  ->  ( ( F `
 k )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <  y ) )
9791, 96mpand 675 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( F `  j )  -  sup ( ran 
F ,  RR ,  `'  <  ) )  < 
y  ->  ( ( F `  k )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <  y ) )
98 ltsub23 10033 . . . . . . . . 9  |-  ( ( ( F `  j
)  e.  RR  /\  y  e.  RR  /\  sup ( ran  F ,  RR ,  `'  <  )  e.  RR )  ->  (
( ( F `  j )  -  y
)  <  sup ( ran  F ,  RR ,  `'  <  )  <->  ( ( F `  j )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <  y ) )
9961, 94, 62, 98syl3anc 1228 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( F `  j )  -  y )  <  sup ( ran  F ,  RR ,  `'  <  )  <-> 
( ( F `  j )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <  y ) )
1003ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ran  F  C_  RR )
1015adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  Fn  Z )
102 fnfvelrn 6019 . . . . . . . . . . . 12  |-  ( ( F  Fn  Z  /\  k  e.  Z )  ->  ( F `  k
)  e.  ran  F
)
103101, 56, 102syl2an 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  ran  F )
104100, 103sseldd 3505 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  RR )
10520ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  E. x  e.  RR  A. y  e.  ran  F  x  <_  y )
106 infmrlb 10525 . . . . . . . . . . 11  |-  ( ( ran  F  C_  RR  /\ 
E. x  e.  RR  A. y  e.  ran  F  x  <_  y  /\  ( F `  k )  e.  ran  F )  ->  sup ( ran  F ,  RR ,  `'  <  )  <_  ( F `  k ) )
107100, 105, 103, 106syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  sup ( ran  F ,  RR ,  `'  <  )  <_  ( F `  k ) )
10862, 104, 107abssubge0d 13229 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  =  ( ( F `
 k )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
109108breq1d 4457 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  <  y  <->  ( ( F `  k )  -  sup ( ran  F ,  RR ,  `'  <  ) )  <  y ) )
11097, 99, 1093imtr4d 268 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( F `  j )  -  y )  <  sup ( ran  F ,  RR ,  `'  <  )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  <  y ) )
111110anassrs 648 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( F `  j )  -  y )  <  sup ( ran  F ,  RR ,  `'  <  )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  <  y ) )
112111ralrimdva 2882 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  (
( ( F `  j )  -  y
)  <  sup ( ran  F ,  RR ,  `'  <  )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  <  y ) )
113112reximdva 2938 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  (
( F `  j
)  -  y )  <  sup ( ran  F ,  RR ,  `'  <  )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  sup ( ran 
F ,  RR ,  `'  <  ) ) )  <  y ) )
11454, 113mpd 15 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  <  y )
115114ralrimiva 2878 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  <  y )
116 fvex 5876 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
1179, 116eqeltri 2551 . . . 4  |-  Z  e. 
_V
118 fex 6134 . . . 4  |-  ( ( F : Z --> RR  /\  Z  e.  _V )  ->  F  e.  _V )
1191, 117, 118sylancl 662 . . 3  |-  ( ph  ->  F  e.  _V )
120 eqidd 2468 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
1211ffvelrnda 6022 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
122121recnd 9623 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1239, 6, 119, 120, 40, 122clim2c 13294 . 2  |-  ( ph  ->  ( F  ~~>  sup ( ran  F ,  RR ,  `'  <  )  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  `'  <  ) ) )  <  y ) )
124115, 123mpbird 232 1  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  `'  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   (/)c0 3785   class class class wbr 4447   `'ccnv 4998   ran crn 5000    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6285   supcsup 7901   CCcc 9491   RRcr 9492   1c1 9494    + caddc 9496    < clt 9629    <_ cle 9630    - cmin 9806   ZZcz 10865   ZZ>=cuz 11083   RR+crp 11221   ...cfz 11673   abscabs 13033    ~~> cli 13273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-rp 11222  df-fz 11674  df-seq 12077  df-exp 12136  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-clim 13277
This theorem is referenced by:  climinff  31380  stirlinglem13  31613
  Copyright terms: Public domain W3C validator