MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climfsum Structured version   Unicode version

Theorem climfsum 13646
Description: Limit of a finite sum of converging sequences. Note that  F ( k ) is a collection of functions with implicit parameter  k, each of which converges to  B ( k ) as  n  ~~> +oo. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
climfsum.1  |-  Z  =  ( ZZ>= `  M )
climfsum.2  |-  ( ph  ->  M  e.  ZZ )
climfsum.3  |-  ( ph  ->  A  e.  Fin )
climfsum.5  |-  ( (
ph  /\  k  e.  A )  ->  F  ~~>  B )
climfsum.6  |-  ( ph  ->  H  e.  W )
climfsum.7  |-  ( (
ph  /\  ( k  e.  A  /\  n  e.  Z ) )  -> 
( F `  n
)  e.  CC )
climfsum.8  |-  ( (
ph  /\  n  e.  Z )  ->  ( H `  n )  =  sum_ k  e.  A  ( F `  n ) )
Assertion
Ref Expression
climfsum  |-  ( ph  ->  H  ~~>  sum_ k  e.  A  B )
Distinct variable groups:    k, n, A    n, H    ph, k, n   
k, Z, n    B, n    n, F    n, M
Allowed substitution hints:    B( k)    F( k)    H( k)    M( k)    W( k, n)

Proof of Theorem climfsum
StepHypRef Expression
1 climfsum.8 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( H `  n )  =  sum_ k  e.  A  ( F `  n ) )
21mpteq2dva 4543 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  ( H `  n
) )  =  ( n  e.  Z  |->  sum_ k  e.  A  ( F `  n ) ) )
3 climfsum.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
4 uzssz 11125 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
53, 4eqsstri 3529 . . . . . . 7  |-  Z  C_  ZZ
6 zssre 10892 . . . . . . 7  |-  ZZ  C_  RR
75, 6sstri 3508 . . . . . 6  |-  Z  C_  RR
87a1i 11 . . . . 5  |-  ( ph  ->  Z  C_  RR )
9 climfsum.3 . . . . 5  |-  ( ph  ->  A  e.  Fin )
10 fvex 5882 . . . . . 6  |-  ( F `
 n )  e. 
_V
1110a1i 11 . . . . 5  |-  ( (
ph  /\  ( n  e.  Z  /\  k  e.  A ) )  -> 
( F `  n
)  e.  _V )
12 climfsum.5 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  F  ~~>  B )
13 climfsum.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
1413adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  M  e.  ZZ )
15 climrel 13327 . . . . . . . . . 10  |-  Rel  ~~>
1615brrelexi 5049 . . . . . . . . 9  |-  ( F  ~~>  B  ->  F  e.  _V )
1712, 16syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  F  e.  _V )
18 eqid 2457 . . . . . . . . 9  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( n  e.  Z  |->  ( F `  n ) )
193, 18climmpt 13406 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  F  e.  _V )  ->  ( F  ~~>  B  <->  ( n  e.  Z  |->  ( F `
 n ) )  ~~>  B ) )
2014, 17, 19syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( F 
~~>  B  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~>  B ) )
2112, 20mpbid 210 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
n  e.  Z  |->  ( F `  n ) )  ~~>  B )
22 climfsum.7 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  A  /\  n  e.  Z ) )  -> 
( F `  n
)  e.  CC )
2322anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  n  e.  Z )  ->  ( F `  n )  e.  CC )
2423, 18fmptd 6056 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  (
n  e.  Z  |->  ( F `  n ) ) : Z --> CC )
253, 14, 24rlimclim 13381 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
( n  e.  Z  |->  ( F `  n
) )  ~~> r  B  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~>  B ) )
2621, 25mpbird 232 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
n  e.  Z  |->  ( F `  n ) )  ~~> r  B )
278, 9, 11, 26fsumrlim 13637 . . . 4  |-  ( ph  ->  ( n  e.  Z  |-> 
sum_ k  e.  A  ( F `  n ) )  ~~> r  sum_ k  e.  A  B )
289adantr 465 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  A  e.  Fin )
2922anass1rs 807 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  A )  ->  ( F `  n )  e.  CC )
3028, 29fsumcl 13567 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  A  ( F `  n )  e.  CC )
31 eqid 2457 . . . . . 6  |-  ( n  e.  Z  |->  sum_ k  e.  A  ( F `  n ) )  =  ( n  e.  Z  |-> 
sum_ k  e.  A  ( F `  n ) )
3230, 31fmptd 6056 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |-> 
sum_ k  e.  A  ( F `  n ) ) : Z --> CC )
333, 13, 32rlimclim 13381 . . . 4  |-  ( ph  ->  ( ( n  e.  Z  |->  sum_ k  e.  A  ( F `  n ) )  ~~> r  sum_ k  e.  A  B  <->  ( n  e.  Z  |->  sum_ k  e.  A  ( F `  n ) )  ~~>  sum_ k  e.  A  B )
)
3427, 33mpbid 210 . . 3  |-  ( ph  ->  ( n  e.  Z  |-> 
sum_ k  e.  A  ( F `  n ) )  ~~>  sum_ k  e.  A  B )
352, 34eqbrtrd 4476 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( H `  n
) )  ~~>  sum_ k  e.  A  B )
36 climfsum.6 . . 3  |-  ( ph  ->  H  e.  W )
37 eqid 2457 . . . 4  |-  ( n  e.  Z  |->  ( H `
 n ) )  =  ( n  e.  Z  |->  ( H `  n ) )
383, 37climmpt 13406 . . 3  |-  ( ( M  e.  ZZ  /\  H  e.  W )  ->  ( H  ~~>  sum_ k  e.  A  B  <->  ( n  e.  Z  |->  ( H `
 n ) )  ~~> 
sum_ k  e.  A  B ) )
3913, 36, 38syl2anc 661 . 2  |-  ( ph  ->  ( H  ~~>  sum_ k  e.  A  B  <->  ( n  e.  Z  |->  ( H `
 n ) )  ~~> 
sum_ k  e.  A  B ) )
4035, 39mpbird 232 1  |-  ( ph  ->  H  ~~>  sum_ k  e.  A  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   _Vcvv 3109    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   ` cfv 5594   Fincfn 7535   CCcc 9507   RRcr 9508   ZZcz 10885   ZZ>=cuz 11106    ~~> cli 13319    ~~> r crli 13320   sum_csu 13520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-fzo 11822  df-fl 11932  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-rlim 13324  df-sum 13521
This theorem is referenced by:  itg1climres  22247  plyeq0lem  22733
  Copyright terms: Public domain W3C validator