Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climf Structured version   Unicode version

Theorem climf 31831
Description: Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. Similar to clim 13329, but without the disjoint var constraint 
F k. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
climf.nf  |-  F/_ k F
climf.f  |-  ( ph  ->  F  e.  V )
climf.fv  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  B )
Assertion
Ref Expression
climf  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Distinct variable groups:    A, j,
k, x    j, F, x    ph, j, k, x
Allowed substitution hints:    B( x, j, k)    F( k)    V( x, j, k)

Proof of Theorem climf
Dummy variables  f 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 13327 . . . . 5  |-  Rel  ~~>
21brrelex2i 5050 . . . 4  |-  ( F  ~~>  A  ->  A  e.  _V )
32a1i 11 . . 3  |-  ( ph  ->  ( F  ~~>  A  ->  A  e.  _V )
)
4 elex 3118 . . . . 5  |-  ( A  e.  CC  ->  A  e.  _V )
54adantr 465 . . . 4  |-  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  ->  A  e.  _V )
65a1i 11 . . 3  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  ->  A  e.  _V ) )
7 climf.f . . . 4  |-  ( ph  ->  F  e.  V )
8 simpr 461 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  A )  ->  y  =  A )
98eleq1d 2526 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  A )  ->  ( y  e.  CC  <->  A  e.  CC ) )
10 nfv 1708 . . . . . . . 8  |-  F/ x
( f  =  F  /\  y  =  A )
11 climf.nf . . . . . . . . . . . 12  |-  F/_ k F
1211nfeq2 2636 . . . . . . . . . . 11  |-  F/ k  f  =  F
13 nfv 1708 . . . . . . . . . . 11  |-  F/ k  y  =  A
1412, 13nfan 1929 . . . . . . . . . 10  |-  F/ k ( f  =  F  /\  y  =  A )
15 fveq1 5871 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
f `  k )  =  ( F `  k ) )
1615adantr 465 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  A )  ->  ( f `  k
)  =  ( F `
 k ) )
1716eleq1d 2526 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( f `  k )  e.  CC  <->  ( F `  k )  e.  CC ) )
18 oveq12 6305 . . . . . . . . . . . . . 14  |-  ( ( ( f `  k
)  =  ( F `
 k )  /\  y  =  A )  ->  ( ( f `  k )  -  y
)  =  ( ( F `  k )  -  A ) )
1915, 18sylan 471 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( f `  k )  -  y
)  =  ( ( F `  k )  -  A ) )
2019fveq2d 5876 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  A )  ->  ( abs `  (
( f `  k
)  -  y ) )  =  ( abs `  ( ( F `  k )  -  A
) ) )
2120breq1d 4466 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( abs `  (
( f `  k
)  -  y ) )  <  x  <->  ( abs `  ( ( F `  k )  -  A
) )  <  x
) )
2217, 21anbi12d 710 . . . . . . . . . 10  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( ( f `
 k )  e.  CC  /\  ( abs `  ( ( f `  k )  -  y
) )  <  x
)  <->  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  x
) ) )
2314, 22ralbid 2891 . . . . . . . . 9  |-  ( ( f  =  F  /\  y  =  A )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x ) ) )
2423rexbidv 2968 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  A )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) )
2510, 24ralbid 2891 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  A )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( f `  k )  e.  CC  /\  ( abs `  ( ( f `
 k )  -  y ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
269, 25anbi12d 710 . . . . . 6  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
27 df-clim 13323 . . . . . 6  |-  ~~>  =  { <. f ,  y >.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
2826, 27brabga 4770 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  _V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
2928ex 434 . . . 4  |-  ( F  e.  V  ->  ( A  e.  _V  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) ) )
307, 29syl 16 . . 3  |-  ( ph  ->  ( A  e.  _V  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) ) )
313, 6, 30pm5.21ndd 354 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
32 eluzelz 11115 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
33 climf.fv . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  B )
3433eleq1d 2526 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( F `  k )  e.  CC  <->  B  e.  CC ) )
3533oveq1d 6311 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( F `  k )  -  A )  =  ( B  -  A
) )
3635fveq2d 5876 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( abs `  ( ( F `  k )  -  A
) )  =  ( abs `  ( B  -  A ) ) )
3736breq1d 4466 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( abs `  ( ( F `  k )  -  A ) )  <  x  <->  ( abs `  ( B  -  A
) )  <  x
) )
3834, 37anbi12d 710 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
3932, 38sylan2 474 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
4039ralbidva 2893 . . . . 5  |-  ( ph  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x ) ) )
4140rexbidv 2968 . . . 4  |-  ( ph  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) ) )
4241ralbidv 2896 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
4342anbi2d 703 . 2  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
4431, 43bitrd 253 1  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   F/_wnfc 2605   A.wral 2807   E.wrex 2808   _Vcvv 3109   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   CCcc 9507    < clt 9645    - cmin 9824   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   abscabs 13079    ~~> cli 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-cnex 9565  ax-resscn 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299  df-neg 9827  df-z 10886  df-uz 11107  df-clim 13323
This theorem is referenced by:  clim2f  31845
  Copyright terms: Public domain W3C validator