Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climexp Structured version   Unicode version

Theorem climexp 29731
Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climexp.1  |-  F/ k
ph
climexp.2  |-  F/_ k F
climexp.3  |-  F/_ k H
climexp.4  |-  Z  =  ( ZZ>= `  M )
climexp.5  |-  ( ph  ->  M  e.  ZZ )
climexp.6  |-  ( ph  ->  F : Z --> CC )
climexp.7  |-  ( ph  ->  F  ~~>  A )
climexp.8  |-  ( ph  ->  N  e.  NN0 )
climexp.9  |-  ( ph  ->  H  e.  V )
climexp.10  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k ) ^ N ) )
Assertion
Ref Expression
climexp  |-  ( ph  ->  H  ~~>  ( A ^ N ) )
Distinct variable groups:    k, N    k, Z
Allowed substitution hints:    ph( k)    A( k)    F( k)    H( k)    M( k)    V( k)

Proof of Theorem climexp
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climexp.4 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 climexp.5 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 climexp.8 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
4 eqid 2438 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
54expcn 20423 . . . . . 6  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
63, 5syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  CC  |->  ( x ^ N
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
74cncfcn1 20461 . . . . 5  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
86, 7syl6eleqr 2529 . . . 4  |-  ( ph  ->  ( x  e.  CC  |->  ( x ^ N
) )  e.  ( CC -cn-> CC ) )
9 climexp.6 . . . 4  |-  ( ph  ->  F : Z --> CC )
10 climexp.7 . . . 4  |-  ( ph  ->  F  ~~>  A )
11 climcl 12969 . . . . 5  |-  ( F  ~~>  A  ->  A  e.  CC )
1210, 11syl 16 . . . 4  |-  ( ph  ->  A  e.  CC )
131, 2, 8, 9, 10, 12climcncf 20451 . . 3  |-  ( ph  ->  ( ( x  e.  CC  |->  ( x ^ N ) )  o.  F )  ~~>  ( ( x  e.  CC  |->  ( x ^ N ) ) `  A ) )
14 eqidd 2439 . . . 4  |-  ( ph  ->  ( x  e.  CC  |->  ( x ^ N
) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
15 simpr 461 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
1615oveq1d 6101 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
x ^ N )  =  ( A ^ N ) )
1712, 3expcld 12000 . . . 4  |-  ( ph  ->  ( A ^ N
)  e.  CC )
1814, 16, 12, 17fvmptd 5774 . . 3  |-  ( ph  ->  ( ( x  e.  CC  |->  ( x ^ N ) ) `  A )  =  ( A ^ N ) )
1913, 18breqtrd 4311 . 2  |-  ( ph  ->  ( ( x  e.  CC  |->  ( x ^ N ) )  o.  F )  ~~>  ( A ^ N ) )
20 climexp.9 . . 3  |-  ( ph  ->  H  e.  V )
21 cnex 9355 . . . . 5  |-  CC  e.  _V
2221mptex 5943 . . . 4  |-  ( x  e.  CC  |->  ( x ^ N ) )  e.  _V
23 fvex 5696 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
241, 23eqeltri 2508 . . . . 5  |-  Z  e. 
_V
25 fex 5945 . . . . 5  |-  ( ( F : Z --> CC  /\  Z  e.  _V )  ->  F  e.  _V )
269, 24, 25sylancl 662 . . . 4  |-  ( ph  ->  F  e.  _V )
27 coexg 6523 . . . 4  |-  ( ( ( x  e.  CC  |->  ( x ^ N
) )  e.  _V  /\  F  e.  _V )  ->  ( ( x  e.  CC  |->  ( x ^ N ) )  o.  F )  e.  _V )
2822, 26, 27sylancr 663 . . 3  |-  ( ph  ->  ( ( x  e.  CC  |->  ( x ^ N ) )  o.  F )  e.  _V )
29 eqidd 2439 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  (
x  e.  CC  |->  ( x ^ N ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
30 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  j  e.  Z )  /\  x  =  ( F `  j ) )  ->  x  =  ( F `  j ) )
3130oveq1d 6101 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  x  =  ( F `  j ) )  -> 
( x ^ N
)  =  ( ( F `  j ) ^ N ) )
329ffvelrnda 5838 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  e.  CC )
333adantr 465 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  N  e.  NN0 )
3432, 33expcld 12000 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  (
( F `  j
) ^ N )  e.  CC )
3529, 31, 32, 34fvmptd 5774 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (
( x  e.  CC  |->  ( x ^ N
) ) `  ( F `  j )
)  =  ( ( F `  j ) ^ N ) )
36 fvco3 5763 . . . . 5  |-  ( ( F : Z --> CC  /\  j  e.  Z )  ->  ( ( ( x  e.  CC  |->  ( x ^ N ) )  o.  F ) `  j )  =  ( ( x  e.  CC  |->  ( x ^ N
) ) `  ( F `  j )
) )
379, 36sylan 471 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (
( ( x  e.  CC  |->  ( x ^ N ) )  o.  F ) `  j
)  =  ( ( x  e.  CC  |->  ( x ^ N ) ) `  ( F `
 j ) ) )
38 climexp.1 . . . . . . 7  |-  F/ k
ph
39 nfv 1673 . . . . . . 7  |-  F/ k  j  e.  Z
4038, 39nfan 1860 . . . . . 6  |-  F/ k ( ph  /\  j  e.  Z )
41 climexp.3 . . . . . . . 8  |-  F/_ k H
42 nfcv 2574 . . . . . . . 8  |-  F/_ k
j
4341, 42nffv 5693 . . . . . . 7  |-  F/_ k
( H `  j
)
44 climexp.2 . . . . . . . . 9  |-  F/_ k F
4544, 42nffv 5693 . . . . . . . 8  |-  F/_ k
( F `  j
)
46 nfcv 2574 . . . . . . . 8  |-  F/_ k ^
47 nfcv 2574 . . . . . . . 8  |-  F/_ k N
4845, 46, 47nfov 6109 . . . . . . 7  |-  F/_ k
( ( F `  j ) ^ N
)
4943, 48nfeq 2581 . . . . . 6  |-  F/ k ( H `  j
)  =  ( ( F `  j ) ^ N )
5040, 49nfim 1852 . . . . 5  |-  F/ k ( ( ph  /\  j  e.  Z )  ->  ( H `  j
)  =  ( ( F `  j ) ^ N ) )
51 eleq1 2498 . . . . . . 7  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
5251anbi2d 703 . . . . . 6  |-  ( k  =  j  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  j  e.  Z ) ) )
53 fveq2 5686 . . . . . . 7  |-  ( k  =  j  ->  ( H `  k )  =  ( H `  j ) )
54 fveq2 5686 . . . . . . . 8  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
5554oveq1d 6101 . . . . . . 7  |-  ( k  =  j  ->  (
( F `  k
) ^ N )  =  ( ( F `
 j ) ^ N ) )
5653, 55eqeq12d 2452 . . . . . 6  |-  ( k  =  j  ->  (
( H `  k
)  =  ( ( F `  k ) ^ N )  <->  ( H `  j )  =  ( ( F `  j
) ^ N ) ) )
5752, 56imbi12d 320 . . . . 5  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  Z )  ->  ( H `  k
)  =  ( ( F `  k ) ^ N ) )  <-> 
( ( ph  /\  j  e.  Z )  ->  ( H `  j
)  =  ( ( F `  j ) ^ N ) ) ) )
58 climexp.10 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k ) ^ N ) )
5950, 57, 58chvar 1957 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( H `  j )  =  ( ( F `
 j ) ^ N ) )
6035, 37, 593eqtr4rd 2481 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  ( H `  j )  =  ( ( ( x  e.  CC  |->  ( x ^ N ) )  o.  F ) `
 j ) )
611, 20, 28, 2, 60climeq 13037 . 2  |-  ( ph  ->  ( H  ~~>  ( A ^ N )  <->  ( (
x  e.  CC  |->  ( x ^ N ) )  o.  F )  ~~>  ( A ^ N
) ) )
6219, 61mpbird 232 1  |-  ( ph  ->  H  ~~>  ( A ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369   F/wnf 1589    e. wcel 1756   F/_wnfc 2561   _Vcvv 2967   class class class wbr 4287    e. cmpt 4345    o. ccom 4839   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   ^cexp 11857    ~~> cli 12954   TopOpenctopn 14352  ℂfldccnfld 17793    Cn ccn 18803   -cn->ccncf 20427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cn 18806  df-cnp 18807  df-tx 19110  df-hmeo 19303  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429
This theorem is referenced by:  stirlinglem8  29829
  Copyright terms: Public domain W3C validator