Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climdivf Structured version   Unicode version

Theorem climdivf 29926
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climdivf.1  |-  F/ k
ph
climdivf.2  |-  F/_ k F
climdivf.3  |-  F/_ k G
climdivf.4  |-  F/_ k H
climdivf.5  |-  Z  =  ( ZZ>= `  M )
climdivf.6  |-  ( ph  ->  M  e.  ZZ )
climdivf.7  |-  ( ph  ->  F  ~~>  A )
climdivf.8  |-  ( ph  ->  H  e.  X )
climdivf.9  |-  ( ph  ->  G  ~~>  B )
climdivf.10  |-  ( ph  ->  B  =/=  0 )
climdivf.11  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climdivf.12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
climdivf.13  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  / 
( G `  k
) ) )
Assertion
Ref Expression
climdivf  |-  ( ph  ->  H  ~~>  ( A  /  B ) )
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    B( k)    F( k)    G( k)    H( k)    M( k)    X( k)

Proof of Theorem climdivf
StepHypRef Expression
1 climdivf.1 . . 3  |-  F/ k
ph
2 climdivf.2 . . 3  |-  F/_ k F
3 nfmpt1 4482 . . 3  |-  F/_ k
( k  e.  Z  |->  ( 1  /  ( G `  k )
) )
4 climdivf.4 . . 3  |-  F/_ k H
5 climdivf.5 . . 3  |-  Z  =  ( ZZ>= `  M )
6 climdivf.6 . . 3  |-  ( ph  ->  M  e.  ZZ )
7 climdivf.7 . . 3  |-  ( ph  ->  F  ~~>  A )
8 climdivf.8 . . 3  |-  ( ph  ->  H  e.  X )
9 climdivf.3 . . . 4  |-  F/_ k G
10 climdivf.9 . . . 4  |-  ( ph  ->  G  ~~>  B )
11 climdivf.10 . . . 4  |-  ( ph  ->  B  =/=  0 )
12 climdivf.12 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
13 simpr 461 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
1412eldifad 3441 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
15 eldifsni 4102 . . . . . . 7  |-  ( ( G `  k )  e.  ( CC  \  { 0 } )  ->  ( G `  k )  =/=  0
)
1612, 15syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =/=  0 )
1714, 16reccld 10204 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
1  /  ( G `
 k ) )  e.  CC )
18 eqid 2451 . . . . . 6  |-  ( k  e.  Z  |->  ( 1  /  ( G `  k ) ) )  =  ( k  e.  Z  |->  ( 1  / 
( G `  k
) ) )
1918fvmpt2 5883 . . . . 5  |-  ( ( k  e.  Z  /\  ( 1  /  ( G `  k )
)  e.  CC )  ->  ( ( k  e.  Z  |->  ( 1  /  ( G `  k ) ) ) `
 k )  =  ( 1  /  ( G `  k )
) )
2013, 17, 19syl2anc 661 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  ( 1  /  ( G `  k )
) ) `  k
)  =  ( 1  /  ( G `  k ) ) )
21 fvex 5802 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
225, 21eqeltri 2535 . . . . . 6  |-  Z  e. 
_V
2322mptex 6050 . . . . 5  |-  ( k  e.  Z  |->  ( 1  /  ( G `  k ) ) )  e.  _V
2423a1i 11 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( 1  /  ( G `  k )
) )  e.  _V )
251, 9, 3, 5, 6, 10, 11, 12, 20, 24climrecf 29923 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( 1  /  ( G `  k )
) )  ~~>  ( 1  /  B ) )
26 climdivf.11 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
2720, 17eqeltrd 2539 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  ( 1  /  ( G `  k )
) ) `  k
)  e.  CC )
28 climdivf.13 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  / 
( G `  k
) ) )
2926, 14, 16divrecd 10214 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  /  ( G `
 k ) )  =  ( ( F `
 k )  x.  ( 1  /  ( G `  k )
) ) )
3020eqcomd 2459 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
1  /  ( G `
 k ) )  =  ( ( k  e.  Z  |->  ( 1  /  ( G `  k ) ) ) `
 k ) )
3130oveq2d 6209 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  x.  ( 1  /  ( G `  k ) ) )  =  ( ( F `
 k )  x.  ( ( k  e.  Z  |->  ( 1  / 
( G `  k
) ) ) `  k ) ) )
3228, 29, 313eqtrd 2496 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  x.  ( ( k  e.  Z  |->  ( 1  / 
( G `  k
) ) ) `  k ) ) )
331, 2, 3, 4, 5, 6, 7, 8, 25, 26, 27, 32climmulf 29918 . 2  |-  ( ph  ->  H  ~~>  ( A  x.  ( 1  /  B
) ) )
34 climcl 13088 . . . 4  |-  ( F  ~~>  A  ->  A  e.  CC )
357, 34syl 16 . . 3  |-  ( ph  ->  A  e.  CC )
36 climcl 13088 . . . 4  |-  ( G  ~~>  B  ->  B  e.  CC )
3710, 36syl 16 . . 3  |-  ( ph  ->  B  e.  CC )
3835, 37, 11divrecd 10214 . 2  |-  ( ph  ->  ( A  /  B
)  =  ( A  x.  ( 1  /  B ) ) )
3933, 38breqtrrd 4419 1  |-  ( ph  ->  H  ~~>  ( A  /  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370   F/wnf 1590    e. wcel 1758   F/_wnfc 2599    =/= wne 2644   _Vcvv 3071    \ cdif 3426   {csn 3978   class class class wbr 4393    |-> cmpt 4451   ` cfv 5519  (class class class)co 6193   CCcc 9384   0cc0 9386   1c1 9387    x. cmul 9391    / cdiv 10097   ZZcz 10750   ZZ>=cuz 10965    ~~> cli 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-sup 7795  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-n0 10684  df-z 10751  df-uz 10966  df-rp 11096  df-seq 11917  df-exp 11976  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-clim 13077
This theorem is referenced by:  stirlinglem8  30017
  Copyright terms: Public domain W3C validator