MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem1 Structured version   Unicode version

Theorem climcndslem1 13304
Description: Lemma for climcnds 13306: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
climcnds.1  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
climcnds.2  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( F `  k
) )
climcnds.3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  <_ 
( F `  k
) )
climcnds.4  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
Assertion
Ref Expression
climcndslem1  |-  ( (
ph  /\  N  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  N
) )
Distinct variable groups:    k, n, F    k, G, n    ph, k, n
Allowed substitution hints:    N( k, n)

Proof of Theorem climcndslem1
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6093 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
2 0p1e1 10425 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
31, 2syl6eq 2486 . . . . . . . . . 10  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
43oveq2d 6102 . . . . . . . . 9  |-  ( x  =  0  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ 1 ) )
5 2cn 10384 . . . . . . . . . . 11  |-  2  e.  CC
6 exp1 11863 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 1 )  =  2 )
75, 6ax-mp 5 . . . . . . . . . 10  |-  ( 2 ^ 1 )  =  2
8 df-2 10372 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
97, 8eqtri 2458 . . . . . . . . 9  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
104, 9syl6eq 2486 . . . . . . . 8  |-  ( x  =  0  ->  (
2 ^ ( x  +  1 ) )  =  ( 1  +  1 ) )
1110oveq1d 6101 . . . . . . 7  |-  ( x  =  0  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 1  +  1 )  - 
1 ) )
12 ax-1cn 9332 . . . . . . . 8  |-  1  e.  CC
13 pncan 9608 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  1  e.  CC )  ->  ( ( 1  +  1 )  -  1 )  =  1 )
1412, 12, 13mp2an 672 . . . . . . 7  |-  ( ( 1  +  1 )  -  1 )  =  1
1511, 14syl6eq 2486 . . . . . 6  |-  ( x  =  0  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  1 )
1615fveq2d 5690 . . . . 5  |-  ( x  =  0  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  1
) )
17 fveq2 5686 . . . . 5  |-  ( x  =  0  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  0
) )
1816, 17breq12d 4300 . . . 4  |-  ( x  =  0  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  1 )  <_  (  seq 0 (  +  ,  G ) `
 0 ) ) )
1918imbi2d 316 . . 3  |-  ( x  =  0  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  <_ 
(  seq 0 (  +  ,  G ) ` 
0 ) ) ) )
20 oveq1 6093 . . . . . . . 8  |-  ( x  =  j  ->  (
x  +  1 )  =  ( j  +  1 ) )
2120oveq2d 6102 . . . . . . 7  |-  ( x  =  j  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( j  +  1 ) ) )
2221oveq1d 6101 . . . . . 6  |-  ( x  =  j  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )
2322fveq2d 5690 . . . . 5  |-  ( x  =  j  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )
24 fveq2 5686 . . . . 5  |-  ( x  =  j  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  j
) )
2523, 24breq12d 4300 . . . 4  |-  ( x  =  j  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )
) )
2625imbi2d 316 . . 3  |-  ( x  =  j  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  j ) ) ) )
27 oveq1 6093 . . . . . . . 8  |-  ( x  =  ( j  +  1 )  ->  (
x  +  1 )  =  ( ( j  +  1 )  +  1 ) )
2827oveq2d 6102 . . . . . . 7  |-  ( x  =  ( j  +  1 )  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( ( j  +  1 )  +  1 ) ) )
2928oveq1d 6101 . . . . . 6  |-  ( x  =  ( j  +  1 )  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )
3029fveq2d 5690 . . . . 5  |-  ( x  =  ( j  +  1 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
31 fveq2 5686 . . . . 5  |-  ( x  =  ( j  +  1 )  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) ) )
3230, 31breq12d 4300 . . . 4  |-  ( x  =  ( j  +  1 )  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  ( j  +  1 ) ) ) )
3332imbi2d 316 . . 3  |-  ( x  =  ( j  +  1 )  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
34 oveq1 6093 . . . . . . . 8  |-  ( x  =  N  ->  (
x  +  1 )  =  ( N  + 
1 ) )
3534oveq2d 6102 . . . . . . 7  |-  ( x  =  N  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( N  +  1 ) ) )
3635oveq1d 6101 . . . . . 6  |-  ( x  =  N  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )
3736fveq2d 5690 . . . . 5  |-  ( x  =  N  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) ) )
38 fveq2 5686 . . . . 5  |-  ( x  =  N  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  N
) )
3937, 38breq12d 4300 . . . 4  |-  ( x  =  N  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  N )
) )
4039imbi2d 316 . . 3  |-  ( x  =  N  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  N ) ) ) )
41 1nn 10325 . . . . . . 7  |-  1  e.  NN
42 climcnds.1 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
4342ralrimiva 2794 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  RR )
44 fveq2 5686 . . . . . . . . 9  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
4544eleq1d 2504 . . . . . . . 8  |-  ( k  =  1  ->  (
( F `  k
)  e.  RR  <->  ( F `  1 )  e.  RR ) )
4645rspcv 3064 . . . . . . 7  |-  ( 1  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  1 )  e.  RR ) )
4741, 43, 46mpsyl 63 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  RR )
4847leidd 9898 . . . . 5  |-  ( ph  ->  ( F `  1
)  <_  ( F `  1 ) )
4947recnd 9404 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  CC )
5049mulid2d 9396 . . . . 5  |-  ( ph  ->  ( 1  x.  ( F `  1 )
)  =  ( F `
 1 ) )
5148, 50breqtrrd 4313 . . . 4  |-  ( ph  ->  ( F `  1
)  <_  ( 1  x.  ( F ` 
1 ) ) )
52 1z 10668 . . . . 5  |-  1  e.  ZZ
53 eqidd 2439 . . . . 5  |-  ( ph  ->  ( F `  1
)  =  ( F `
 1 ) )
5452, 53seq1i 11812 . . . 4  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  =  ( F `  1
) )
55 0z 10649 . . . . 5  |-  0  e.  ZZ
56 0nn0 10586 . . . . . 6  |-  0  e.  NN0
57 climcnds.4 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
5857ralrimiva 2794 . . . . . 6  |-  ( ph  ->  A. n  e.  NN0  ( G `  n )  =  ( ( 2 ^ n )  x.  ( F `  (
2 ^ n ) ) ) )
59 fveq2 5686 . . . . . . . 8  |-  ( n  =  0  ->  ( G `  n )  =  ( G ` 
0 ) )
60 oveq2 6094 . . . . . . . . . 10  |-  ( n  =  0  ->  (
2 ^ n )  =  ( 2 ^ 0 ) )
61 exp0 11861 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 0 )  =  1 )
625, 61ax-mp 5 . . . . . . . . . 10  |-  ( 2 ^ 0 )  =  1
6360, 62syl6eq 2486 . . . . . . . . 9  |-  ( n  =  0  ->  (
2 ^ n )  =  1 )
6463fveq2d 5690 . . . . . . . . 9  |-  ( n  =  0  ->  ( F `  ( 2 ^ n ) )  =  ( F ` 
1 ) )
6563, 64oveq12d 6104 . . . . . . . 8  |-  ( n  =  0  ->  (
( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) )  =  ( 1  x.  ( F `  1
) ) )
6659, 65eqeq12d 2452 . . . . . . 7  |-  ( n  =  0  ->  (
( G `  n
)  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  <->  ( G `  0 )  =  ( 1  x.  ( F `  1 )
) ) )
6766rspcv 3064 . . . . . 6  |-  ( 0  e.  NN0  ->  ( A. n  e.  NN0  ( G `
 n )  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n ) ) )  ->  ( G `  0 )  =  ( 1  x.  ( F `  1 )
) ) )
6856, 58, 67mpsyl 63 . . . . 5  |-  ( ph  ->  ( G `  0
)  =  ( 1  x.  ( F ` 
1 ) ) )
6955, 68seq1i 11812 . . . 4  |-  ( ph  ->  (  seq 0 (  +  ,  G ) `
 0 )  =  ( 1  x.  ( F `  1 )
) )
7051, 54, 693brtr4d 4317 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  <_ 
(  seq 0 (  +  ,  G ) ` 
0 ) )
71 fzfid 11787 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  e. 
Fin )
72 simpl 457 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ph )
7372adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ph )
74 2nn 10471 . . . . . . . . . . . 12  |-  2  e.  NN
75 peano2nn0 10612 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
7675adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e. 
NN0 )
77 nnexpcl 11870 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
j  +  1 ) )  e.  NN )
7874, 76, 77sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  NN )
79 elfzuz 11441 . . . . . . . . . . 11  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
80 eluznn 10917 . . . . . . . . . . 11  |-  ( ( ( 2 ^ (
j  +  1 ) )  e.  NN  /\  k  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  -> 
k  e.  NN )
8178, 79, 80syl2an 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  k  e.  NN )
8273, 81, 42syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  RR )
8343adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. k  e.  NN  ( F `  k )  e.  RR )
84 fveq2 5686 . . . . . . . . . . . . 13  |-  ( k  =  ( 2 ^ ( j  +  1 ) )  ->  ( F `  k )  =  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
8584eleq1d 2504 . . . . . . . . . . . 12  |-  ( k  =  ( 2 ^ ( j  +  1 ) )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  RR ) )
8685rspcv 3064 . . . . . . . . . . 11  |-  ( ( 2 ^ ( j  +  1 ) )  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  RR ) )
8778, 83, 86sylc 60 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  RR )
8887adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  RR )
89 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
90 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  ph )
9178adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( 2 ^ ( j  +  1 ) )  e.  NN )
92 elfzuz 11441 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... n )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
9391, 92, 80syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  k  e.  NN )
9490, 93, 42syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  ( F `  k )  e.  RR )
95 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  ph )
96 elfzuz 11441 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( n  -  1 ) )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
9791, 96, 80syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  k  e.  NN )
98 climcnds.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  <_ 
( F `  k
) )
9995, 97, 98syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
10089, 94, 99monoord2 11829 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( F `  n )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) )
101100ralrimiva 2794 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) ( F `  n
)  <_  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
102 fveq2 5686 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
103102breq1d 4297 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( F `  n
)  <_  ( F `  ( 2 ^ (
j  +  1 ) ) )  <->  ( F `  k )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) ) )
104103rspccva 3067 . . . . . . . . . 10  |-  ( ( A. n  e.  (
ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) ( F `  n )  <_  ( F `  ( 2 ^ (
j  +  1 ) ) )  /\  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( F `  k )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) )
105101, 79, 104syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  (
2 ^ ( j  +  1 ) ) ) )
10671, 82, 88, 105fsumle 13254 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  ( 2 ^ (
j  +  1 ) ) ) )
107 fzfid 11787 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  e. 
Fin )
108 hashcl 12118 . . . . . . . . . . . . 13  |-  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  e.  Fin  ->  ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  e. 
NN0 )
109107, 108syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  e.  NN0 )
110109nn0cnd 10630 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  e.  CC )
11178nnred 10329 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  RR )
112111recnd 9404 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  CC )
113 hashcl 12118 . . . . . . . . . . . . 13  |-  ( ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  ->  ( # `
 ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e. 
NN0 )
11471, 113syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e.  NN0 )
115114nn0cnd 10630 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e.  CC )
116 2z 10670 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  ZZ
117 zexpcl 11872 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  ZZ  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
j  +  1 ) )  e.  ZZ )
118116, 76, 117sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  ZZ )
119 nn0p1nn 10611 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN0  ->  ( j  +  1 )  e.  NN )
120119adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  NN )
121 nnuz 10888 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  =  ( ZZ>= `  1 )
122120, 121syl6eleq 2528 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  ( ZZ>= `  1 )
)
123 2re 10383 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  RR
124 1le2 10527 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  <_  2
125 leexp2a 11911 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  (
j  +  1 )  e.  ( ZZ>= `  1
) )  ->  (
2 ^ 1 )  <_  ( 2 ^ ( j  +  1 ) ) )
126123, 124, 125mp3an12 1304 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( j  +  1 )  e.  ( ZZ>= `  1
)  ->  ( 2 ^ 1 )  <_ 
( 2 ^ (
j  +  1 ) ) )
127122, 126syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ 1 )  <_ 
( 2 ^ (
j  +  1 ) ) )
1287, 127syl5eqbrr 4321 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  2  <_  ( 2 ^ ( j  +  1 ) ) )
129116eluz1i 10860 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2
)  <->  ( ( 2 ^ ( j  +  1 ) )  e.  ZZ  /\  2  <_ 
( 2 ^ (
j  +  1 ) ) ) )
130118, 128, 129sylanbrc 664 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2 )
)
131 uz2m1nn 10921 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2
)  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  NN )
132130, 131syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  NN )
133132, 121syl6eleq 2528 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1 )
)
134 peano2zm 10680 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ZZ  ->  (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ZZ )
135118, 134syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ZZ )
136 peano2nn0 10612 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  +  1 )  e.  NN0  ->  ( ( j  +  1 )  +  1 )  e. 
NN0 )
13776, 136syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
j  +  1 )  +  1 )  e. 
NN0 )
138 zexpcl 11872 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  ( ( j  +  1 )  +  1 )  e.  NN0 )  ->  ( 2 ^ (
( j  +  1 )  +  1 ) )  e.  ZZ )
139116, 137, 138sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  ZZ )
140 peano2zm 10680 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  ZZ  ->  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ )
141139, 140syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ )
142118zred 10739 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  RR )
143139zred 10739 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  RR )
144 1red 9393 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  RR )
14576nn0zd 10737 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  ZZ )
146 uzid 10867 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  +  1 )  e.  ZZ  ->  (
j  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) ) )
147 peano2uz 10900 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) )  ->  ( (
j  +  1 )  +  1 )  e.  ( ZZ>= `  ( j  +  1 ) ) )
148 leexp2a 11911 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  (
( j  +  1 )  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) ) )  ->  (
2 ^ ( j  +  1 ) )  <_  ( 2 ^ ( ( j  +  1 )  +  1 ) ) )
149123, 124, 148mp3an12 1304 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( j  +  1 )  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) )  ->  ( 2 ^ ( j  +  1 ) )  <_ 
( 2 ^ (
( j  +  1 )  +  1 ) ) )
150145, 146, 147, 1494syl 21 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  <_ 
( 2 ^ (
( j  +  1 )  +  1 ) ) )
151142, 143, 144, 150lesub1dd 9947 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  <_ 
( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )
152 eluz2 10859 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <->  ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  e.  ZZ  /\  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ  /\  ( ( 2 ^ ( j  +  1 ) )  -  1 )  <_ 
( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )
153135, 141, 151, 152syl3anbrc 1172 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( (
2 ^ ( j  +  1 ) )  -  1 ) ) )
154 elfzuzb 11439 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  <->  ( (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
)  /\  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( (
2 ^ ( j  +  1 ) )  -  1 ) ) ) )
155133, 153, 154sylanbrc 664 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
156 fzsplit 11467 . . . . . . . . . . . . . . 15  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
157155, 156syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
158 npcan 9611 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ (
j  +  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 )  =  ( 2 ^ ( j  +  1 ) ) )
159112, 12, 158sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( 2 ^ (
j  +  1 ) )  -  1 )  +  1 )  =  ( 2 ^ (
j  +  1 ) ) )
160159oveq1d 6101 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( 2 ^ ( j  +  1 ) )  -  1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
161160uneq2d 3505 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  u.  ( ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  +  1 ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  ( ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) )
162157, 161eqtrd 2470 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
163162fveq2d 5690 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( # `  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) ) )
164 expp1 11864 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  2 ) )
1655, 76, 164sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  2 ) )
166112times2d 10560 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  2 )  =  ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
167165, 166eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
168167oveq1d 6101 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ (
j  +  1 ) ) )  -  1 ) )
16912a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  CC )
170112, 112, 169addsubd 9732 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( 2 ^ (
j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
171168, 170eqtrd 2470 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
172 uztrn 10869 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  /\  (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
) )  ->  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
) )
173153, 133, 172syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  1 )
)
174173, 121syl6eleqr 2529 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  NN )
175174nnnn0d 10628 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e. 
NN0 )
176 hashfz1 12109 . . . . . . . . . . . . . 14  |-  ( ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )
177175, 176syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )
178132nnnn0d 10628 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e. 
NN0 )
179 hashfz1 12109 . . . . . . . . . . . . . . 15  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  =  ( ( 2 ^ (
j  +  1 ) )  -  1 ) )
180178, 179syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  =  ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )
181180oveq1d 6101 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ (
j  +  1 ) ) )  =  ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
182171, 177, 1813eqtr4d 2480 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
183111ltm1d 10257 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  < 
( 2 ^ (
j  +  1 ) ) )
184 fzdisj 11468 . . . . . . . . . . . . . 14  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  <  ( 2 ^ ( j  +  1 ) )  ->  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  i^i  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  (/) )
185183, 184syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  i^i  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  (/) )
186 hashun 12137 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  e.  Fin  /\  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  i^i  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  =  (/) )  -> 
( # `  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )  =  ( ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  +  (
# `  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) ) )
187107, 71, 185, 186syl3anc 1218 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) )  =  ( (
# `  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) ) )
188163, 182, 1873eqtr3d 2478 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ (
j  +  1 ) ) )  =  ( ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  +  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) ) )
189110, 112, 115, 188addcanad 9566 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  =  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
190189oveq1d 6101 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  ( F `  ( 2 ^ (
j  +  1 ) ) ) )  =  ( ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
19158adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. n  e.  NN0  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
192 fveq2 5686 . . . . . . . . . . . 12  |-  ( n  =  ( j  +  1 )  ->  ( G `  n )  =  ( G `  ( j  +  1 ) ) )
193 oveq2 6094 . . . . . . . . . . . . 13  |-  ( n  =  ( j  +  1 )  ->  (
2 ^ n )  =  ( 2 ^ ( j  +  1 ) ) )
194193fveq2d 5690 . . . . . . . . . . . . 13  |-  ( n  =  ( j  +  1 )  ->  ( F `  ( 2 ^ n ) )  =  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
195193, 194oveq12d 6104 . . . . . . . . . . . 12  |-  ( n  =  ( j  +  1 )  ->  (
( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  ( F `  (
2 ^ ( j  +  1 ) ) ) ) )
196192, 195eqeq12d 2452 . . . . . . . . . . 11  |-  ( n  =  ( j  +  1 )  ->  (
( G `  n
)  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  <->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) ) )
197196rspcv 3064 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  NN0  ->  ( A. n  e.  NN0  ( G `
 n )  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n ) ) )  ->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) ) )
19876, 191, 197sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
19987recnd 9404 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  CC )
200 fsumconst 13249 . . . . . . . . . 10  |-  ( ( ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  /\  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  CC )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  ( 2 ^ ( j  +  1 ) ) )  =  ( ( # `  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `  ( 2 ^ ( j  +  1 ) ) ) ) )
20171, 199, 200syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  ( 2 ^ (
j  +  1 ) ) )  =  ( ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
202190, 198, 2013eqtr4d 2480 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  =  sum_ k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  ( 2 ^ ( j  +  1 ) ) ) )
203106, 202breqtrrd 4313 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  ( G `  ( j  +  1 ) ) )
204 elfznn 11470 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  ->  k  e.  NN )
20572, 204, 42syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  RR )
206107, 205fsumrecl 13203 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  e.  RR )
20771, 82fsumrecl 13203 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  e.  RR )
208 nn0uz 10887 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
209 0zd 10650 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ZZ )
210 simpr 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN0 )  ->  n  e.  NN0 )
211 nnexpcl 11870 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
21274, 210, 211sylancr 663 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 2 ^ n )  e.  NN )
213212nnred 10329 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 2 ^ n )  e.  RR )
21443adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN0 )  ->  A. k  e.  NN  ( F `  k )  e.  RR )
215 fveq2 5686 . . . . . . . . . . . . . . 15  |-  ( k  =  ( 2 ^ n )  ->  ( F `  k )  =  ( F `  ( 2 ^ n
) ) )
216215eleq1d 2504 . . . . . . . . . . . . . 14  |-  ( k  =  ( 2 ^ n )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( 2 ^ n
) )  e.  RR ) )
217216rspcv 3064 . . . . . . . . . . . . 13  |-  ( ( 2 ^ n )  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  ( 2 ^ n ) )  e.  RR ) )
218212, 214, 217sylc 60 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( F `  ( 2 ^ n
) )  e.  RR )
219213, 218remulcld 9406 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  e.  RR )
22057, 219eqeltrd 2512 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  e.  RR )
221208, 209, 220serfre 11827 . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  G ) : NN0 --> RR )
222221ffvelrnda 5838 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  G ) `  j
)  e.  RR )
223142, 87remulcld 9406 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  ( F `  ( 2 ^ (
j  +  1 ) ) ) )  e.  RR )
224198, 223eqeltrd 2512 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  e.  RR )
225 le2add 9813 . . . . . . . 8  |-  ( ( ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  e.  RR  /\  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  k )  e.  RR )  /\  ( (  seq 0
(  +  ,  G
) `  j )  e.  RR  /\  ( G `
 ( j  +  1 ) )  e.  RR ) )  -> 
( ( sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  <_  (  seq 0 (  +  ,  G ) `  j
)  /\  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  ( G `  ( j  +  1 ) ) )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
) )  <_  (
(  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
226206, 207, 222, 224, 225syl22anc 1219 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  <_  (  seq 0
(  +  ,  G
) `  j )  /\  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
)  <_  ( G `  ( j  +  1 ) ) )  -> 
( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) )  <_ 
( (  seq 0
(  +  ,  G
) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
227203, 226mpan2d 674 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  <_  (  seq 0
(  +  ,  G
) `  j )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) )  <_ 
( (  seq 0
(  +  ,  G
) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
228 eqidd 2439 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
22942recnd 9404 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
23072, 204, 229syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  CC )
231228, 133, 230fsumser 13199 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  =  (  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )
232231eqcomd 2443 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  =  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k ) )
233232breq1d 4297 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  j
)  <->  sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  <_  (  seq 0 (  +  ,  G ) `  j
) ) )
234 eqidd 2439 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
235 elfznn 11470 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  k  e.  NN )
23672, 235, 229syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  CC )
237234, 173, 236fsumser 13199 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  =  (  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )
238 fzfid 11787 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  e. 
Fin )
239185, 162, 238, 236fsumsplit 13208 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  =  (
sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) ) )
240237, 239eqtr3d 2472 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  =  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
) ) )
241 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
242241, 208syl6eleq 2528 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  ( ZZ>= `  0 )
)
243 seqp1 11813 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  0
)  ->  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) )
244242, 243syl 16 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) )
245240, 244breq12d 4300 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  <->  ( sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  k ) )  <_  ( (  seq 0 (  +  ,  G ) `  j
)  +  ( G `
 ( j  +  1 ) ) ) ) )
246227, 233, 2453imtr4d 268 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  j
)  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) ) ) )
247246expcom 435 . . . 4  |-  ( j  e.  NN0  ->  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
248247a2d 26 . . 3  |-  ( j  e.  NN0  ->  ( (
ph  ->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )
)  ->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
24919, 26, 33, 40, 70, 248nn0ind 10730 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  N ) ) )
250249impcom 430 1  |-  ( (
ph  /\  N  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710    u. cun 3321    i^i cin 3322   (/)c0 3632   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   Fincfn 7302   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   NNcn 10314   2c2 10363   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   ...cfz 11429    seqcseq 11798   ^cexp 11857   #chash 12095   sum_csu 13155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-ico 11298  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156
This theorem is referenced by:  climcnds  13306
  Copyright terms: Public domain W3C validator