MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem1 Structured version   Unicode version

Theorem climcndslem1 13620
Description: Lemma for climcnds 13622: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
climcnds.1  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
climcnds.2  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( F `  k
) )
climcnds.3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  <_ 
( F `  k
) )
climcnds.4  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
Assertion
Ref Expression
climcndslem1  |-  ( (
ph  /\  N  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  N
) )
Distinct variable groups:    k, n, F    k, G, n    ph, k, n
Allowed substitution hints:    N( k, n)

Proof of Theorem climcndslem1
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6289 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
2 0p1e1 10643 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
31, 2syl6eq 2524 . . . . . . . . . 10  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
43oveq2d 6298 . . . . . . . . 9  |-  ( x  =  0  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ 1 ) )
5 2cn 10602 . . . . . . . . . . 11  |-  2  e.  CC
6 exp1 12136 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 1 )  =  2 )
75, 6ax-mp 5 . . . . . . . . . 10  |-  ( 2 ^ 1 )  =  2
8 df-2 10590 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
97, 8eqtri 2496 . . . . . . . . 9  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
104, 9syl6eq 2524 . . . . . . . 8  |-  ( x  =  0  ->  (
2 ^ ( x  +  1 ) )  =  ( 1  +  1 ) )
1110oveq1d 6297 . . . . . . 7  |-  ( x  =  0  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 1  +  1 )  - 
1 ) )
12 ax-1cn 9546 . . . . . . . 8  |-  1  e.  CC
13 pncan 9822 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  1  e.  CC )  ->  ( ( 1  +  1 )  -  1 )  =  1 )
1412, 12, 13mp2an 672 . . . . . . 7  |-  ( ( 1  +  1 )  -  1 )  =  1
1511, 14syl6eq 2524 . . . . . 6  |-  ( x  =  0  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  1 )
1615fveq2d 5868 . . . . 5  |-  ( x  =  0  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  1
) )
17 fveq2 5864 . . . . 5  |-  ( x  =  0  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  0
) )
1816, 17breq12d 4460 . . . 4  |-  ( x  =  0  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  1 )  <_  (  seq 0 (  +  ,  G ) `
 0 ) ) )
1918imbi2d 316 . . 3  |-  ( x  =  0  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  <_ 
(  seq 0 (  +  ,  G ) ` 
0 ) ) ) )
20 oveq1 6289 . . . . . . . 8  |-  ( x  =  j  ->  (
x  +  1 )  =  ( j  +  1 ) )
2120oveq2d 6298 . . . . . . 7  |-  ( x  =  j  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( j  +  1 ) ) )
2221oveq1d 6297 . . . . . 6  |-  ( x  =  j  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )
2322fveq2d 5868 . . . . 5  |-  ( x  =  j  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )
24 fveq2 5864 . . . . 5  |-  ( x  =  j  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  j
) )
2523, 24breq12d 4460 . . . 4  |-  ( x  =  j  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )
) )
2625imbi2d 316 . . 3  |-  ( x  =  j  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  j ) ) ) )
27 oveq1 6289 . . . . . . . 8  |-  ( x  =  ( j  +  1 )  ->  (
x  +  1 )  =  ( ( j  +  1 )  +  1 ) )
2827oveq2d 6298 . . . . . . 7  |-  ( x  =  ( j  +  1 )  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( ( j  +  1 )  +  1 ) ) )
2928oveq1d 6297 . . . . . 6  |-  ( x  =  ( j  +  1 )  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )
3029fveq2d 5868 . . . . 5  |-  ( x  =  ( j  +  1 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
31 fveq2 5864 . . . . 5  |-  ( x  =  ( j  +  1 )  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) ) )
3230, 31breq12d 4460 . . . 4  |-  ( x  =  ( j  +  1 )  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  ( j  +  1 ) ) ) )
3332imbi2d 316 . . 3  |-  ( x  =  ( j  +  1 )  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
34 oveq1 6289 . . . . . . . 8  |-  ( x  =  N  ->  (
x  +  1 )  =  ( N  + 
1 ) )
3534oveq2d 6298 . . . . . . 7  |-  ( x  =  N  ->  (
2 ^ ( x  +  1 ) )  =  ( 2 ^ ( N  +  1 ) ) )
3635oveq1d 6297 . . . . . 6  |-  ( x  =  N  ->  (
( 2 ^ (
x  +  1 ) )  -  1 )  =  ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )
3736fveq2d 5868 . . . . 5  |-  ( x  =  N  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  =  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) ) )
38 fveq2 5864 . . . . 5  |-  ( x  =  N  ->  (  seq 0 (  +  ,  G ) `  x
)  =  (  seq 0 (  +  ,  G ) `  N
) )
3937, 38breq12d 4460 . . . 4  |-  ( x  =  N  ->  (
(  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
)  <->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  N )
) )
4039imbi2d 316 . . 3  |-  ( x  =  N  ->  (
( ph  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
x  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  x
) )  <->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  N ) ) ) )
41 1nn 10543 . . . . . . 7  |-  1  e.  NN
42 climcnds.1 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
4342ralrimiva 2878 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  RR )
44 fveq2 5864 . . . . . . . . 9  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
4544eleq1d 2536 . . . . . . . 8  |-  ( k  =  1  ->  (
( F `  k
)  e.  RR  <->  ( F `  1 )  e.  RR ) )
4645rspcv 3210 . . . . . . 7  |-  ( 1  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  1 )  e.  RR ) )
4741, 43, 46mpsyl 63 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  RR )
4847leidd 10115 . . . . 5  |-  ( ph  ->  ( F `  1
)  <_  ( F `  1 ) )
4947recnd 9618 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  CC )
5049mulid2d 9610 . . . . 5  |-  ( ph  ->  ( 1  x.  ( F `  1 )
)  =  ( F `
 1 ) )
5148, 50breqtrrd 4473 . . . 4  |-  ( ph  ->  ( F `  1
)  <_  ( 1  x.  ( F ` 
1 ) ) )
52 1z 10890 . . . . 5  |-  1  e.  ZZ
53 eqidd 2468 . . . . 5  |-  ( ph  ->  ( F `  1
)  =  ( F `
 1 ) )
5452, 53seq1i 12085 . . . 4  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  =  ( F `  1
) )
55 0z 10871 . . . . 5  |-  0  e.  ZZ
56 0nn0 10806 . . . . . 6  |-  0  e.  NN0
57 climcnds.4 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
5857ralrimiva 2878 . . . . . 6  |-  ( ph  ->  A. n  e.  NN0  ( G `  n )  =  ( ( 2 ^ n )  x.  ( F `  (
2 ^ n ) ) ) )
59 fveq2 5864 . . . . . . . 8  |-  ( n  =  0  ->  ( G `  n )  =  ( G ` 
0 ) )
60 oveq2 6290 . . . . . . . . . 10  |-  ( n  =  0  ->  (
2 ^ n )  =  ( 2 ^ 0 ) )
61 exp0 12134 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 0 )  =  1 )
625, 61ax-mp 5 . . . . . . . . . 10  |-  ( 2 ^ 0 )  =  1
6360, 62syl6eq 2524 . . . . . . . . 9  |-  ( n  =  0  ->  (
2 ^ n )  =  1 )
6463fveq2d 5868 . . . . . . . . 9  |-  ( n  =  0  ->  ( F `  ( 2 ^ n ) )  =  ( F ` 
1 ) )
6563, 64oveq12d 6300 . . . . . . . 8  |-  ( n  =  0  ->  (
( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) )  =  ( 1  x.  ( F `  1
) ) )
6659, 65eqeq12d 2489 . . . . . . 7  |-  ( n  =  0  ->  (
( G `  n
)  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  <->  ( G `  0 )  =  ( 1  x.  ( F `  1 )
) ) )
6766rspcv 3210 . . . . . 6  |-  ( 0  e.  NN0  ->  ( A. n  e.  NN0  ( G `
 n )  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n ) ) )  ->  ( G `  0 )  =  ( 1  x.  ( F `  1 )
) ) )
6856, 58, 67mpsyl 63 . . . . 5  |-  ( ph  ->  ( G `  0
)  =  ( 1  x.  ( F ` 
1 ) ) )
6955, 68seq1i 12085 . . . 4  |-  ( ph  ->  (  seq 0 (  +  ,  G ) `
 0 )  =  ( 1  x.  ( F `  1 )
) )
7051, 54, 693brtr4d 4477 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 1 )  <_ 
(  seq 0 (  +  ,  G ) ` 
0 ) )
71 fzfid 12047 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  e. 
Fin )
72 simpl 457 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ph )
7372adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ph )
74 2nn 10689 . . . . . . . . . . . 12  |-  2  e.  NN
75 peano2nn0 10832 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
7675adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e. 
NN0 )
77 nnexpcl 12143 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
j  +  1 ) )  e.  NN )
7874, 76, 77sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  NN )
79 elfzuz 11680 . . . . . . . . . . 11  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
80 eluznn 11148 . . . . . . . . . . 11  |-  ( ( ( 2 ^ (
j  +  1 ) )  e.  NN  /\  k  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  -> 
k  e.  NN )
8178, 79, 80syl2an 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  k  e.  NN )
8273, 81, 42syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  RR )
8343adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. k  e.  NN  ( F `  k )  e.  RR )
84 fveq2 5864 . . . . . . . . . . . . 13  |-  ( k  =  ( 2 ^ ( j  +  1 ) )  ->  ( F `  k )  =  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
8584eleq1d 2536 . . . . . . . . . . . 12  |-  ( k  =  ( 2 ^ ( j  +  1 ) )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  RR ) )
8685rspcv 3210 . . . . . . . . . . 11  |-  ( ( 2 ^ ( j  +  1 ) )  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  RR ) )
8778, 83, 86sylc 60 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  RR )
8887adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  RR )
89 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
90 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  ph )
9178adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( 2 ^ ( j  +  1 ) )  e.  NN )
92 elfzuz 11680 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... n )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
9391, 92, 80syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  k  e.  NN )
9490, 93, 42syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... n ) )  ->  ( F `  k )  e.  RR )
95 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  ph )
96 elfzuz 11680 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( n  -  1 ) )  ->  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )
9791, 96, 80syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  k  e.  NN )
98 climcnds.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  <_ 
( F `  k
) )
9995, 97, 98syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ (
j  +  1 ) ) ) )  /\  k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( n  - 
1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
10089, 94, 99monoord2 12102 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( F `  n )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) )
101100ralrimiva 2878 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. n  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) ( F `  n
)  <_  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
102 fveq2 5864 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
103102breq1d 4457 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( F `  n
)  <_  ( F `  ( 2 ^ (
j  +  1 ) ) )  <->  ( F `  k )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) ) )
104103rspccva 3213 . . . . . . . . . 10  |-  ( ( A. n  e.  (
ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) ( F `  n )  <_  ( F `  ( 2 ^ (
j  +  1 ) ) )  /\  k  e.  ( ZZ>= `  ( 2 ^ ( j  +  1 ) ) ) )  ->  ( F `  k )  <_  ( F `  ( 2 ^ ( j  +  1 ) ) ) )
105101, 79, 104syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  (
2 ^ ( j  +  1 ) ) ) )
10671, 82, 88, 105fsumle 13572 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  ( 2 ^ (
j  +  1 ) ) ) )
107 fzfid 12047 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  e. 
Fin )
108 hashcl 12392 . . . . . . . . . . . . 13  |-  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  e.  Fin  ->  ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  e. 
NN0 )
109107, 108syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  e.  NN0 )
110109nn0cnd 10850 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  e.  CC )
11178nnred 10547 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  RR )
112111recnd 9618 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  CC )
113 hashcl 12392 . . . . . . . . . . . . 13  |-  ( ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  ->  ( # `
 ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e. 
NN0 )
11471, 113syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e.  NN0 )
115114nn0cnd 10850 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  e.  CC )
116 2z 10892 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  ZZ
117 zexpcl 12145 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  ZZ  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
j  +  1 ) )  e.  ZZ )
118116, 76, 117sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  ZZ )
119 nn0p1nn 10831 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN0  ->  ( j  +  1 )  e.  NN )
120119adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  NN )
121 nnuz 11113 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  =  ( ZZ>= `  1 )
122120, 121syl6eleq 2565 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  ( ZZ>= `  1 )
)
123 2re 10601 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  RR
124 1le2 10745 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  <_  2
125 leexp2a 12185 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  (
j  +  1 )  e.  ( ZZ>= `  1
) )  ->  (
2 ^ 1 )  <_  ( 2 ^ ( j  +  1 ) ) )
126123, 124, 125mp3an12 1314 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( j  +  1 )  e.  ( ZZ>= `  1
)  ->  ( 2 ^ 1 )  <_ 
( 2 ^ (
j  +  1 ) ) )
127122, 126syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ 1 )  <_ 
( 2 ^ (
j  +  1 ) ) )
1287, 127syl5eqbrr 4481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  2  <_  ( 2 ^ ( j  +  1 ) ) )
129116eluz1i 11085 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2
)  <->  ( ( 2 ^ ( j  +  1 ) )  e.  ZZ  /\  2  <_ 
( 2 ^ (
j  +  1 ) ) ) )
130118, 128, 129sylanbrc 664 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2 )
)
131 uz2m1nn 11152 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ( ZZ>= `  2
)  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  NN )
132130, 131syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  NN )
133132, 121syl6eleq 2565 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1 )
)
134 peano2zm 10902 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( j  +  1 ) )  e.  ZZ  ->  (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ZZ )
135118, 134syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ZZ )
136 peano2nn0 10832 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  +  1 )  e.  NN0  ->  ( ( j  +  1 )  +  1 )  e. 
NN0 )
13776, 136syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
j  +  1 )  +  1 )  e. 
NN0 )
138 zexpcl 12145 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  ( ( j  +  1 )  +  1 )  e.  NN0 )  ->  ( 2 ^ (
( j  +  1 )  +  1 ) )  e.  ZZ )
139116, 137, 138sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  ZZ )
140 peano2zm 10902 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  ZZ  ->  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ )
141139, 140syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ )
142118zred 10962 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  e.  RR )
143139zred 10962 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  e.  RR )
144 1red 9607 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  RR )
14576nn0zd 10960 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e.  ZZ )
146 uzid 11092 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  +  1 )  e.  ZZ  ->  (
j  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) ) )
147 peano2uz 11130 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) )  ->  ( (
j  +  1 )  +  1 )  e.  ( ZZ>= `  ( j  +  1 ) ) )
148 leexp2a 12185 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  (
( j  +  1 )  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) ) )  ->  (
2 ^ ( j  +  1 ) )  <_  ( 2 ^ ( ( j  +  1 )  +  1 ) ) )
149123, 124, 148mp3an12 1314 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( j  +  1 )  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) )  ->  ( 2 ^ ( j  +  1 ) )  <_ 
( 2 ^ (
( j  +  1 )  +  1 ) ) )
150145, 146, 147, 1494syl 21 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  <_ 
( 2 ^ (
( j  +  1 )  +  1 ) ) )
151142, 143, 144, 150lesub1dd 10164 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  <_ 
( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )
152 eluz2 11084 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <->  ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  e.  ZZ  /\  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ZZ  /\  ( ( 2 ^ ( j  +  1 ) )  -  1 )  <_ 
( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )
153135, 141, 151, 152syl3anbrc 1180 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( (
2 ^ ( j  +  1 ) )  -  1 ) ) )
154 elfzuzb 11678 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  <->  ( (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
)  /\  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( (
2 ^ ( j  +  1 ) )  -  1 ) ) ) )
155133, 153, 154sylanbrc 664 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
156 fzsplit 11707 . . . . . . . . . . . . . . 15  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
157155, 156syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
158 npcan 9825 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ (
j  +  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  1 )  =  ( 2 ^ ( j  +  1 ) ) )
159112, 12, 158sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( 2 ^ (
j  +  1 ) )  -  1 )  +  1 )  =  ( 2 ^ (
j  +  1 ) ) )
160159oveq1d 6297 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( 2 ^ ( j  +  1 ) )  -  1 )  +  1 ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )
161160uneq2d 3658 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  u.  ( ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  +  1 ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  ( ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) )
162157, 161eqtrd 2508 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  =  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
163162fveq2d 5868 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( # `  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) ) )
164 expp1 12137 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  2 ) )
1655, 76, 164sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  2 ) )
166112times2d 10778 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  2 )  =  ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
167165, 166eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( ( j  +  1 )  +  1 ) )  =  ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
168167oveq1d 6297 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  +  ( 2 ^ (
j  +  1 ) ) )  -  1 ) )
16912a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  CC )
170112, 112, 169addsubd 9947 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( 2 ^ (
j  +  1 ) )  +  ( 2 ^ ( j  +  1 ) ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
171168, 170eqtrd 2508 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  =  ( ( ( 2 ^ ( j  +  1 ) )  - 
1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
172 uztrn 11094 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  /\  (
( 2 ^ (
j  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
) )  ->  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  1
) )
173153, 133, 172syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  ( ZZ>= `  1 )
)
174173, 121syl6eleqr 2566 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e.  NN )
175174nnnn0d 10848 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( ( j  +  1 )  +  1 ) )  -  1 )  e. 
NN0 )
176 hashfz1 12383 . . . . . . . . . . . . . 14  |-  ( ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  ( ( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )
177175, 176syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )
178132nnnn0d 10848 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  e. 
NN0 )
179 hashfz1 12383 . . . . . . . . . . . . . . 15  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  =  ( ( 2 ^ (
j  +  1 ) )  -  1 ) )
180178, 179syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  =  ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )
181180oveq1d 6297 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ (
j  +  1 ) ) )  =  ( ( ( 2 ^ ( j  +  1 ) )  -  1 )  +  ( 2 ^ ( j  +  1 ) ) ) )
182171, 177, 1813eqtr4d 2518 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  ( ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ ( j  +  1 ) ) ) )
183111ltm1d 10474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  -  1 )  < 
( 2 ^ (
j  +  1 ) ) )
184 fzdisj 11708 . . . . . . . . . . . . . 14  |-  ( ( ( 2 ^ (
j  +  1 ) )  -  1 )  <  ( 2 ^ ( j  +  1 ) )  ->  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  i^i  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) )  =  (/) )
185183, 184syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) )  i^i  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  =  (/) )
186 hashun 12414 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  e.  Fin  /\  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  i^i  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  =  (/) )  -> 
( # `  ( ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )  =  ( ( # `  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  +  (
# `  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) ) )
187107, 71, 185, 186syl3anc 1228 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( # `  (
( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) )  u.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ) )  =  ( (
# `  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) ) )
188163, 182, 1873eqtr3d 2516 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( # `
 ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )  +  ( 2 ^ (
j  +  1 ) ) )  =  ( ( # `  (
1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) )  +  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) ) )
189110, 112, 115, 188addcanad 9780 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 2 ^ ( j  +  1 ) )  =  ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ) )
190189oveq1d 6297 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  ( F `  ( 2 ^ (
j  +  1 ) ) ) )  =  ( ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
19158adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  A. n  e.  NN0  ( G `  n )  =  ( ( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) ) )
192 fveq2 5864 . . . . . . . . . . . 12  |-  ( n  =  ( j  +  1 )  ->  ( G `  n )  =  ( G `  ( j  +  1 ) ) )
193 oveq2 6290 . . . . . . . . . . . . 13  |-  ( n  =  ( j  +  1 )  ->  (
2 ^ n )  =  ( 2 ^ ( j  +  1 ) ) )
194193fveq2d 5868 . . . . . . . . . . . . 13  |-  ( n  =  ( j  +  1 )  ->  ( F `  ( 2 ^ n ) )  =  ( F `  ( 2 ^ (
j  +  1 ) ) ) )
195193, 194oveq12d 6300 . . . . . . . . . . . 12  |-  ( n  =  ( j  +  1 )  ->  (
( 2 ^ n
)  x.  ( F `
 ( 2 ^ n ) ) )  =  ( ( 2 ^ ( j  +  1 ) )  x.  ( F `  (
2 ^ ( j  +  1 ) ) ) ) )
196192, 195eqeq12d 2489 . . . . . . . . . . 11  |-  ( n  =  ( j  +  1 )  ->  (
( G `  n
)  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  <->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) ) )
197196rspcv 3210 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  NN0  ->  ( A. n  e.  NN0  ( G `
 n )  =  ( ( 2 ^ n )  x.  ( F `  ( 2 ^ n ) ) )  ->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) ) )
19876, 191, 197sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  =  ( ( 2 ^ (
j  +  1 ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
19987recnd 9618 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  ( 2 ^ (
j  +  1 ) ) )  e.  CC )
200 fsumconst 13564 . . . . . . . . . 10  |-  ( ( ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  e.  Fin  /\  ( F `  ( 2 ^ ( j  +  1 ) ) )  e.  CC )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  ( 2 ^ ( j  +  1 ) ) )  =  ( ( # `  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `  ( 2 ^ ( j  +  1 ) ) ) ) )
20171, 199, 200syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  ( 2 ^ (
j  +  1 ) ) )  =  ( ( # `  (
( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )  x.  ( F `
 ( 2 ^ ( j  +  1 ) ) ) ) )
202190, 198, 2013eqtr4d 2518 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  =  sum_ k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  ( 2 ^ ( j  +  1 ) ) ) )
203106, 202breqtrrd 4473 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  ( G `  ( j  +  1 ) ) )
204 elfznn 11710 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) )  ->  k  e.  NN )
20572, 204, 42syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  RR )
206107, 205fsumrecl 13515 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  e.  RR )
20771, 82fsumrecl 13515 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  e.  RR )
208 nn0uz 11112 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
209 0zd 10872 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ZZ )
210 simpr 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN0 )  ->  n  e.  NN0 )
211 nnexpcl 12143 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
21274, 210, 211sylancr 663 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 2 ^ n )  e.  NN )
213212nnred 10547 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 2 ^ n )  e.  RR )
21443adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN0 )  ->  A. k  e.  NN  ( F `  k )  e.  RR )
215 fveq2 5864 . . . . . . . . . . . . . . 15  |-  ( k  =  ( 2 ^ n )  ->  ( F `  k )  =  ( F `  ( 2 ^ n
) ) )
216215eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( k  =  ( 2 ^ n )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( 2 ^ n
) )  e.  RR ) )
217216rspcv 3210 . . . . . . . . . . . . 13  |-  ( ( 2 ^ n )  e.  NN  ->  ( A. k  e.  NN  ( F `  k )  e.  RR  ->  ( F `  ( 2 ^ n ) )  e.  RR ) )
218212, 214, 217sylc 60 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( F `  ( 2 ^ n
) )  e.  RR )
219213, 218remulcld 9620 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
2 ^ n )  x.  ( F `  ( 2 ^ n
) ) )  e.  RR )
22057, 219eqeltrd 2555 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  e.  RR )
221208, 209, 220serfre 12100 . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  G ) : NN0 --> RR )
222221ffvelrnda 6019 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  G ) `  j
)  e.  RR )
223142, 87remulcld 9620 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
2 ^ ( j  +  1 ) )  x.  ( F `  ( 2 ^ (
j  +  1 ) ) ) )  e.  RR )
224198, 223eqeltrd 2555 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( j  +  1 ) )  e.  RR )
225 le2add 10030 . . . . . . . 8  |-  ( ( ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  e.  RR  /\  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  k )  e.  RR )  /\  ( (  seq 0
(  +  ,  G
) `  j )  e.  RR  /\  ( G `
 ( j  +  1 ) )  e.  RR ) )  -> 
( ( sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  <_  (  seq 0 (  +  ,  G ) `  j
)  /\  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  <_  ( G `  ( j  +  1 ) ) )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
) )  <_  (
(  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
226206, 207, 222, 224, 225syl22anc 1229 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  <_  (  seq 0
(  +  ,  G
) `  j )  /\  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
)  <_  ( G `  ( j  +  1 ) ) )  -> 
( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) )  <_ 
( (  seq 0
(  +  ,  G
) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
227203, 226mpan2d 674 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  <_  (  seq 0
(  +  ,  G
) `  j )  ->  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) )  <_ 
( (  seq 0
(  +  ,  G
) `  j )  +  ( G `  ( j  +  1 ) ) ) ) )
228 eqidd 2468 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
22942recnd 9618 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
23072, 204, 229syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  CC )
231228, 133, 230fsumser 13511 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  =  (  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) )
232231eqcomd 2475 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  =  sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k ) )
233232breq1d 4457 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  j
)  <->  sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  <_  (  seq 0 (  +  ,  G ) `  j
) ) )
234 eqidd 2468 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
235 elfznn 11710 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) )  ->  k  e.  NN )
23672, 235, 229syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) )  ->  ( F `  k )  e.  CC )
237234, 173, 236fsumser 13511 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  =  (  seq 1 (  +  ,  F ) `  ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) )
238 fzfid 12047 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1 ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  e. 
Fin )
239185, 162, 238, 236fsumsplit 13521 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 1 ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k )  =  (
sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ( 2 ^ ( j  +  1 ) ) ... (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k ) ) )
240237, 239eqtr3d 2510 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  =  ( sum_ k  e.  ( 1 ... ( ( 2 ^ ( j  +  1 ) )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  ( ( 2 ^ (
j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  -  1 ) ) ( F `  k
) ) )
241 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
242241, 208syl6eleq 2565 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  ( ZZ>= `  0 )
)
243 seqp1 12086 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  0
)  ->  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) )
244242, 243syl 16 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  j )  +  ( G `  ( j  +  1 ) ) ) )
245240, 244breq12d 4460 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) )  <->  ( sum_ k  e.  ( 1 ... (
( 2 ^ (
j  +  1 ) )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( (
2 ^ ( j  +  1 ) ) ... ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) ) ( F `  k ) )  <_  ( (  seq 0 (  +  ,  G ) `  j
)  +  ( G `
 ( j  +  1 ) ) ) ) )
246227, 233, 2453imtr4d 268 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
j  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  j
)  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ (
( j  +  1 )  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  (
j  +  1 ) ) ) )
247246expcom 435 . . . 4  |-  ( j  e.  NN0  ->  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
248247a2d 26 . . 3  |-  ( j  e.  NN0  ->  ( (
ph  ->  (  seq 1
(  +  ,  F
) `  ( (
2 ^ ( j  +  1 ) )  -  1 ) )  <_  (  seq 0
(  +  ,  G
) `  j )
)  ->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( ( j  +  1 )  +  1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  ( j  +  1 ) ) ) ) )
24919, 26, 33, 40, 70, 248nn0ind 10953 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( ( 2 ^ ( N  + 
1 ) )  - 
1 ) )  <_ 
(  seq 0 (  +  ,  G ) `  N ) ) )
250249impcom 430 1  |-  ( (
ph  /\  N  e.  NN0 )  ->  (  seq 1 (  +  ,  F ) `  (
( 2 ^ ( N  +  1 ) )  -  1 ) )  <_  (  seq 0 (  +  ,  G ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    u. cun 3474    i^i cin 3475   (/)c0 3785   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Fincfn 7513   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   ...cfz 11668    seqcseq 12071   ^cexp 12130   #chash 12369   sum_csu 13467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-ico 11531  df-fz 11669  df-fzo 11789  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468
This theorem is referenced by:  climcnds  13622
  Copyright terms: Public domain W3C validator