MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcau Structured version   Unicode version

Theorem climcau 13144
Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
climcau  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x

Proof of Theorem climcau
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldm2g 5032 . . . 4  |-  ( F  e.  dom  ~~>  ->  ( F  e.  dom  ~~>  <->  E. y <. F ,  y >.  e. 
~~>  ) )
21ibi 241 . . 3  |-  ( F  e.  dom  ~~>  ->  E. y <. F ,  y >.  e. 
~~>  )
3 df-br 4290 . . . . 5  |-  ( F  ~~>  y  <->  <. F ,  y
>.  e.  ~~>  )
4 climcau.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
5 simpll 748 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  M  e.  ZZ )
6 rphalfcl 11011 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
76adantl 463 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( x  /  2
)  e.  RR+ )
8 eqidd 2442 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  k  e.  Z
)  ->  ( F `  k )  =  ( F `  k ) )
9 simplr 749 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  F 
~~>  y )
104, 5, 7, 8, 9climi 12984 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) ) )
11 eluzelz 10866 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
12 uzid 10871 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
1311, 12syl 16 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ( ZZ>= `  j )
)
1413, 4eleq2s 2533 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
1514adantl 463 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  j  e.  ( ZZ>= `  j )
)
16 fveq2 5688 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1716eleq1d 2507 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1816oveq1d 6105 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
( F `  k
)  -  y )  =  ( ( F `
 j )  -  y ) )
1918fveq2d 5692 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( abs `  ( ( F `
 k )  -  y ) )  =  ( abs `  (
( F `  j
)  -  y ) ) )
2019breq1d 4299 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 )  <->  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )
2117, 20anbi12d 705 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  <-> 
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) ) ) )
2221rspcv 3066 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
2315, 22syl 16 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
24 rpre 10993 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
2524ad2antlr 721 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  x  e.  RR )
26 simpllr 753 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  F  ~~>  y )
27 climcl 12973 . . . . . . . . . . . 12  |-  ( F  ~~>  y  ->  y  e.  CC )
2826, 27syl 16 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  y  e.  CC )
29 simprl 750 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  k )  e.  CC )
30 simplrl 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  j )  e.  CC )
31 simpllr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  y  e.  CC )
32 simplll 752 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  x  e.  RR )
33 simprr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )
3431, 30abssubd 12935 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  j )  -  y ) ) )
35 simplrr 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )
3634, 35eqbrtrd 4309 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  <  (
x  /  2 ) )
3729, 30, 31, 32, 33, 36abs3lemd 12943 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)
3837ex 434 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
3938ralimdv 2793 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4039ex 434 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) )  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4140com23 78 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  j )  e.  CC  /\  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4225, 28, 41syl2anc 656 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
4323, 42mpdd 40 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4443reximdva 2826 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4510, 44mpd 15 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
4645ralrimiva 2797 . . . . . 6  |-  ( ( M  e.  ZZ  /\  F 
~~>  y )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4746ex 434 . . . . 5  |-  ( M  e.  ZZ  ->  ( F 
~~>  y  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
483, 47syl5bir 218 . . . 4  |-  ( M  e.  ZZ  ->  ( <. F ,  y >.  e. 
~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
4948exlimdv 1695 . . 3  |-  ( M  e.  ZZ  ->  ( E. y <. F ,  y
>.  e.  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
502, 49syl5 32 . 2  |-  ( M  e.  ZZ  ->  ( F  e.  dom  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
5150imp 429 1  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761   A.wral 2713   E.wrex 2714   <.cop 3880   class class class wbr 4289   dom cdm 4836   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277    < clt 9414    - cmin 9591    / cdiv 9989   2c2 10367   ZZcz 10642   ZZ>=cuz 10857   RR+crp 10987   abscabs 12719    ~~> cli 12958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962
This theorem is referenced by:  climbdd  13145  caucvgb  13153  cvgcmp  13275  cvgcmpce  13277  mbflimlem  21104  mtest  21828
  Copyright terms: Public domain W3C validator