MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim0 Structured version   Visualization version   Unicode version

Theorem clim0 13647
Description: Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim0.1  |-  Z  =  ( ZZ>= `  M )
clim0.2  |-  ( ph  ->  M  e.  ZZ )
clim0.3  |-  ( ph  ->  F  e.  V )
clim0.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
Assertion
Ref Expression
clim0  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
) )
Distinct variable groups:    j, k, x, F    j, M    ph, j,
k, x    j, Z, k
Allowed substitution hints:    B( x, j, k)    M( x, k)    V( x, j, k)    Z( x)

Proof of Theorem clim0
StepHypRef Expression
1 clim0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 clim0.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 clim0.3 . . 3  |-  ( ph  ->  F  e.  V )
4 clim0.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
51, 2, 3, 4clim2 13645 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  (
0  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x ) ) ) )
6 0cn 9653 . . . 4  |-  0  e.  CC
76biantrur 514 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x )  <-> 
( 0  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  - 
0 ) )  < 
x ) ) )
8 subid1 9914 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B  -  0 )  =  B )
98fveq2d 5883 . . . . . . . 8  |-  ( B  e.  CC  ->  ( abs `  ( B  - 
0 ) )  =  ( abs `  B
) )
109breq1d 4405 . . . . . . 7  |-  ( B  e.  CC  ->  (
( abs `  ( B  -  0 ) )  <  x  <->  ( abs `  B )  <  x
) )
1110pm5.32i 649 . . . . . 6  |-  ( ( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  B )  <  x
) )
1211ralbii 2823 . . . . 5  |-  ( A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  - 
0 ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
)
1312rexbii 2881 . . . 4  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  - 
0 ) )  < 
x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
)
1413ralbii 2823 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
)
157, 14bitr3i 259 . 2  |-  ( ( 0  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x ) )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  B )  < 
x ) )
165, 15syl6bb 269 1  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   CCcc 9555   0cc0 9557    < clt 9693    - cmin 9880   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   abscabs 13374    ~~> cli 13625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-po 4760  df-so 4761  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-z 10962  df-uz 11183  df-clim 13629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator