Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel4 Structured version   Unicode version

Theorem clel4 3191
 Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel4.1
Assertion
Ref Expression
clel4
Distinct variable groups:   ,   ,

Proof of Theorem clel4
StepHypRef Expression
1 clel4.1 . . 3
2 eleq2 2477 . . 3
31, 2ceqsalv 3089 . 2
43bicomi 204 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 186  wal 1405   wceq 1407   wcel 1844  cvv 3061 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-12 1880  ax-ext 2382 This theorem depends on definitions:  df-bi 187  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-v 3063 This theorem is referenced by:  intpr  4263
 Copyright terms: Public domain W3C validator