Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel3g Structured version   Unicode version

Theorem clel3g 3237
 Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.)
Assertion
Ref Expression
clel3g
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem clel3g
StepHypRef Expression
1 eleq2 2530 . . 3
21ceqsexgv 3232 . 2
32bicomd 201 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1395  wex 1613   wcel 1819 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111 This theorem is referenced by:  clel3  3238  dfiun2g  4364
 Copyright terms: Public domain W3C validator