MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldsubg Structured version   Unicode version

Theorem cldsubg 20482
Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
subgntr.h  |-  J  =  ( TopOpen `  G )
cldsubg.1  |-  R  =  ( G ~QG  S )
cldsubg.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
cldsubg  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R
)  e.  Fin )  ->  ( S  e.  (
Clsd `  J )  <->  S  e.  J ) )

Proof of Theorem cldsubg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1000 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  G  e.  TopGrp )
2 subgntr.h . . . . . . . . 9  |-  J  =  ( TopOpen `  G )
3 cldsubg.2 . . . . . . . . 9  |-  X  =  ( Base `  G
)
42, 3tgptopon 20454 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  X ) )
51, 4syl 16 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  J  e.  (TopOn `  X )
)
6 toponuni 19301 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
75, 6syl 16 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  X  =  U. J )
87difeq1d 3606 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( X  \  U. ( ( X /. R ) 
\  { S }
) )  =  ( U. J  \  U. ( ( X /. R )  \  { S } ) ) )
9 simpl2 1001 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  e.  (SubGrp `  G )
)
10 unisng 4250 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  U. { S }  =  S )
119, 10syl 16 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. { S }  =  S
)
1211uneq2d 3643 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. ( ( X /. R )  \  { S } )  u.  U. { S } )  =  ( U. ( ( X /. R ) 
\  { S }
)  u.  S ) )
13 uniun 4253 . . . . . . . 8  |-  U. (
( ( X /. R )  \  { S } )  u.  { S } )  =  ( U. ( ( X /. R )  \  { S } )  u. 
U. { S }
)
14 undif1 3889 . . . . . . . . . . 11  |-  ( ( ( X /. R
)  \  { S } )  u.  { S } )  =  ( ( X /. R
)  u.  { S } )
15 cldsubg.1 . . . . . . . . . . . . . . . 16  |-  R  =  ( G ~QG  S )
16 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  =  ( 0g `  G
)
173, 15, 16eqgid 16127 . . . . . . . . . . . . . . 15  |-  ( S  e.  (SubGrp `  G
)  ->  [ ( 0g `  G ) ] R  =  S )
189, 17syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  [ ( 0g `  G ) ] R  =  S )
19 ovex 6309 . . . . . . . . . . . . . . . 16  |-  ( G ~QG  S )  e.  _V
2015, 19eqeltri 2527 . . . . . . . . . . . . . . 15  |-  R  e. 
_V
21 tgpgrp 20450 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
221, 21syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  G  e.  Grp )
233, 16grpidcl 15952 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
2422, 23syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( 0g `  G )  e.  X )
25 ecelqsg 7368 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  _V  /\  ( 0g `  G )  e.  X )  ->  [ ( 0g `  G ) ] R  e.  ( X /. R
) )
2620, 24, 25sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  [ ( 0g `  G ) ] R  e.  ( X /. R ) )
2718, 26eqeltrrd 2532 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  e.  ( X /. R
) )
2827snssd 4160 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  { S }  C_  ( X /. R ) )
29 ssequn2 3662 . . . . . . . . . . . 12  |-  ( { S }  C_  ( X /. R )  <->  ( ( X /. R )  u. 
{ S } )  =  ( X /. R ) )
3028, 29sylib 196 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( X /. R
)  u.  { S } )  =  ( X /. R ) )
3114, 30syl5eq 2496 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( ( X /. R )  \  { S } )  u.  { S } )  =  ( X /. R ) )
3231unieqd 4244 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( ( X /. R )  \  { S } )  u.  { S } )  =  U. ( X /. R ) )
333, 15eqger 16125 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  R  Er  X )
349, 33syl 16 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  R  Er  X )
3520a1i 11 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  R  e.  _V )
3634, 35uniqs2 7375 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. ( X /. R )  =  X )
3732, 36eqtrd 2484 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( ( X /. R )  \  { S } )  u.  { S } )  =  X )
3813, 37syl5eqr 2498 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. ( ( X /. R )  \  { S } )  u.  U. { S } )  =  X )
3912, 38eqtr3d 2486 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. ( ( X /. R )  \  { S } )  u.  S
)  =  X )
40 difss 3616 . . . . . . . . 9  |-  ( ( X /. R ) 
\  { S }
)  C_  ( X /. R )
4140unissi 4257 . . . . . . . 8  |-  U. (
( X /. R
)  \  { S } )  C_  U. ( X /. R )
4241, 36syl5sseq 3537 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( X /. R
)  \  { S } )  C_  X
)
43 df-ne 2640 . . . . . . . . . . . . 13  |-  ( x  =/=  S  <->  -.  x  =  S )
4434adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  R  Er  X )
45 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  x  e.  ( X /. R
) )
4627adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  S  e.  ( X /. R
) )
4744, 45, 46qsdisj 7390 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  (
x  =  S  \/  ( x  i^i  S )  =  (/) ) )
4847ord 377 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  ( -.  x  =  S  ->  ( x  i^i  S
)  =  (/) ) )
49 disj2 3860 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  S )  =  (/)  <->  x  C_  ( _V 
\  S ) )
5048, 49syl6ib 226 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  ( -.  x  =  S  ->  x  C_  ( _V  \  S ) ) )
5143, 50syl5bi 217 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  (
x  =/=  S  ->  x  C_  ( _V  \  S ) ) )
5251expimpd 603 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( x  e.  ( X /. R )  /\  x  =/=  S
)  ->  x  C_  ( _V  \  S ) ) )
53 eldifsn 4140 . . . . . . . . . . 11  |-  ( x  e.  ( ( X /. R )  \  { S } )  <->  ( x  e.  ( X /. R
)  /\  x  =/=  S ) )
54 selpw 4004 . . . . . . . . . . 11  |-  ( x  e.  ~P ( _V 
\  S )  <->  x  C_  ( _V  \  S ) )
5552, 53, 543imtr4g 270 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
x  e.  ( ( X /. R ) 
\  { S }
)  ->  x  e.  ~P ( _V  \  S
) ) )
5655ssrdv 3495 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( X /. R
)  \  { S } )  C_  ~P ( _V  \  S ) )
57 sspwuni 4401 . . . . . . . . 9  |-  ( ( ( X /. R
)  \  { S } )  C_  ~P ( _V  \  S )  <->  U. ( ( X /. R )  \  { S } )  C_  ( _V  \  S ) )
5856, 57sylib 196 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( X /. R
)  \  { S } )  C_  ( _V  \  S ) )
59 disj2 3860 . . . . . . . 8  |-  ( ( U. ( ( X /. R )  \  { S } )  i^i 
S )  =  (/)  <->  U. ( ( X /. R )  \  { S } )  C_  ( _V  \  S ) )
6058, 59sylibr 212 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. ( ( X /. R )  \  { S } )  i^i  S
)  =  (/) )
61 uneqdifeq 3902 . . . . . . 7  |-  ( ( U. ( ( X /. R )  \  { S } )  C_  X  /\  ( U. (
( X /. R
)  \  { S } )  i^i  S
)  =  (/) )  -> 
( ( U. (
( X /. R
)  \  { S } )  u.  S
)  =  X  <->  ( X  \ 
U. ( ( X /. R )  \  { S } ) )  =  S ) )
6242, 60, 61syl2anc 661 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( U. ( ( X /. R ) 
\  { S }
)  u.  S )  =  X  <->  ( X  \ 
U. ( ( X /. R )  \  { S } ) )  =  S ) )
6339, 62mpbid 210 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( X  \  U. ( ( X /. R ) 
\  { S }
) )  =  S )
648, 63eqtr3d 2486 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. J  \  U. (
( X /. R
)  \  { S } ) )  =  S )
65 topontop 19300 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
665, 65syl 16 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  J  e.  Top )
67 simpl3 1002 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( X /. R )  e. 
Fin )
68 diffi 7753 . . . . . . 7  |-  ( ( X /. R )  e.  Fin  ->  (
( X /. R
)  \  { S } )  e.  Fin )
6967, 68syl 16 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( X /. R
)  \  { S } )  e.  Fin )
70 vex 3098 . . . . . . . . . 10  |-  x  e. 
_V
7170elqs 7366 . . . . . . . . 9  |-  ( x  e.  ( X /. R )  <->  E. y  e.  X  x  =  [ y ] R
)
72 simpll2 1037 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  S  e.  (SubGrp `  G )
)
73 subgrcl 16080 . . . . . . . . . . . . . 14  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
7472, 73syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  G  e.  Grp )
753subgss 16076 . . . . . . . . . . . . . . 15  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
769, 75syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  C_  X )
7776adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  S  C_  X )
78 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  y  e.  X )
79 eqid 2443 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
803, 15, 79eqglact 16126 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  S  C_  X  /\  y  e.  X )  ->  [ y ] R  =  ( ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) " S ) )
8174, 77, 78, 80syl3anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  [ y ] R  =  ( ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) " S ) )
82 simplr 755 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  S  e.  ( Clsd `  J
) )
83 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( z  e.  X  |->  ( y ( +g  `  G
) z ) )  =  ( z  e.  X  |->  ( y ( +g  `  G ) z ) )
8483, 3, 79, 2tgplacthmeo 20475 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  TopGrp  /\  y  e.  X )  ->  (
z  e.  X  |->  ( y ( +g  `  G
) z ) )  e.  ( J Homeo J ) )
851, 84sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  (
z  e.  X  |->  ( y ( +g  `  G
) z ) )  e.  ( J Homeo J ) )
8676, 7sseqtrd 3525 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  C_ 
U. J )
8786adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  S  C_ 
U. J )
88 eqid 2443 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
8988hmeocld 20141 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  X  |->  ( y ( +g  `  G ) z ) )  e.  ( J
Homeo J )  /\  S  C_ 
U. J )  -> 
( S  e.  (
Clsd `  J )  <->  ( ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) " S )  e.  ( Clsd `  J
) ) )
9085, 87, 89syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  ( S  e.  ( Clsd `  J )  <->  ( (
z  e.  X  |->  ( y ( +g  `  G
) z ) )
" S )  e.  ( Clsd `  J
) ) )
9182, 90mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  (
( z  e.  X  |->  ( y ( +g  `  G ) z ) ) " S )  e.  ( Clsd `  J
) )
9281, 91eqeltrd 2531 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  [ y ] R  e.  (
Clsd `  J )
)
93 eleq1 2515 . . . . . . . . . . 11  |-  ( x  =  [ y ] R  ->  ( x  e.  ( Clsd `  J
)  <->  [ y ] R  e.  ( Clsd `  J
) ) )
9492, 93syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  (
x  =  [ y ] R  ->  x  e.  ( Clsd `  J
) ) )
9594rexlimdva 2935 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( E. y  e.  X  x  =  [ y ] R  ->  x  e.  ( Clsd `  J
) ) )
9671, 95syl5bi 217 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
x  e.  ( X /. R )  ->  x  e.  ( Clsd `  J ) ) )
9796ssrdv 3495 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( X /. R )  C_  ( Clsd `  J )
)
9897ssdifssd 3627 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( X /. R
)  \  { S } )  C_  ( Clsd `  J ) )
9988unicld 19420 . . . . . 6  |-  ( ( J  e.  Top  /\  ( ( X /. R )  \  { S } )  e.  Fin  /\  ( ( X /. R )  \  { S } )  C_  ( Clsd `  J ) )  ->  U. ( ( X /. R )  \  { S } )  e.  ( Clsd `  J
) )
10066, 69, 98, 99syl3anc 1229 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( X /. R
)  \  { S } )  e.  (
Clsd `  J )
)
10188cldopn 19405 . . . . 5  |-  ( U. ( ( X /. R )  \  { S } )  e.  (
Clsd `  J )  ->  ( U. J  \  U. ( ( X /. R )  \  { S } ) )  e.  J )
102100, 101syl 16 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. J  \  U. (
( X /. R
)  \  { S } ) )  e.  J )
10364, 102eqeltrrd 2532 . . 3  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  e.  J )
104103ex 434 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R
)  e.  Fin )  ->  ( S  e.  (
Clsd `  J )  ->  S  e.  J ) )
1052opnsubg 20479 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  S  e.  ( Clsd `  J )
)
1061053expia 1199 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( S  e.  J  ->  S  e.  ( Clsd `  J
) ) )
1071063adant3 1017 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R
)  e.  Fin )  ->  ( S  e.  J  ->  S  e.  ( Clsd `  J ) ) )
108104, 107impbid 191 1  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R
)  e.  Fin )  ->  ( S  e.  (
Clsd `  J )  <->  S  e.  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   E.wrex 2794   _Vcvv 3095    \ cdif 3458    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   ~Pcpw 3997   {csn 4014   U.cuni 4234    |-> cmpt 4495   "cima 4992   ` cfv 5578  (class class class)co 6281    Er wer 7310   [cec 7311   /.cqs 7312   Fincfn 7518   Basecbs 14509   +g cplusg 14574   TopOpenctopn 14696   0gc0g 14714   Grpcgrp 15927  SubGrpcsubg 16069   ~QG cqg 16071   Topctop 19267  TopOnctopon 19268   Clsdccld 19390   Homeochmeo 20127   TopGrpctgp 20443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-0g 14716  df-topgen 14718  df-plusf 15745  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15931  df-minusg 15932  df-sbg 15933  df-subg 16072  df-eqg 16074  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cld 19393  df-cn 19601  df-cnp 19602  df-tx 19936  df-hmeo 20129  df-tmd 20444  df-tgp 20445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator