MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldsubg Unicode version

Theorem cldsubg 18093
Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
subgntr.h  |-  J  =  ( TopOpen `  G )
cldsubg.1  |-  R  =  ( G ~QG  S )
cldsubg.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
cldsubg  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R
)  e.  Fin )  ->  ( S  e.  (
Clsd `  J )  <->  S  e.  J ) )

Proof of Theorem cldsubg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 960 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  G  e.  TopGrp )
2 subgntr.h . . . . . . . . 9  |-  J  =  ( TopOpen `  G )
3 cldsubg.2 . . . . . . . . 9  |-  X  =  ( Base `  G
)
42, 3tgptopon 18065 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  X ) )
51, 4syl 16 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  J  e.  (TopOn `  X )
)
6 toponuni 16947 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
75, 6syl 16 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  X  =  U. J )
87difeq1d 3424 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( X  \  U. ( ( X /. R ) 
\  { S }
) )  =  ( U. J  \  U. ( ( X /. R )  \  { S } ) ) )
9 simpl2 961 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  e.  (SubGrp `  G )
)
10 unisng 3992 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  U. { S }  =  S )
119, 10syl 16 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. { S }  =  S
)
1211uneq2d 3461 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. ( ( X /. R )  \  { S } )  u.  U. { S } )  =  ( U. ( ( X /. R ) 
\  { S }
)  u.  S ) )
13 uniun 3994 . . . . . . . 8  |-  U. (
( ( X /. R )  \  { S } )  u.  { S } )  =  ( U. ( ( X /. R )  \  { S } )  u. 
U. { S }
)
14 undif1 3663 . . . . . . . . . . 11  |-  ( ( ( X /. R
)  \  { S } )  u.  { S } )  =  ( ( X /. R
)  u.  { S } )
15 cldsubg.1 . . . . . . . . . . . . . . . 16  |-  R  =  ( G ~QG  S )
16 eqid 2404 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  =  ( 0g `  G
)
173, 15, 16eqgid 14947 . . . . . . . . . . . . . . 15  |-  ( S  e.  (SubGrp `  G
)  ->  [ ( 0g `  G ) ] R  =  S )
189, 17syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  [ ( 0g `  G ) ] R  =  S )
19 ovex 6065 . . . . . . . . . . . . . . . 16  |-  ( G ~QG  S )  e.  _V
2015, 19eqeltri 2474 . . . . . . . . . . . . . . 15  |-  R  e. 
_V
21 tgpgrp 18061 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
221, 21syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  G  e.  Grp )
233, 16grpidcl 14788 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
2422, 23syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( 0g `  G )  e.  X )
25 ecelqsg 6918 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  _V  /\  ( 0g `  G )  e.  X )  ->  [ ( 0g `  G ) ] R  e.  ( X /. R
) )
2620, 24, 25sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  [ ( 0g `  G ) ] R  e.  ( X /. R ) )
2718, 26eqeltrrd 2479 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  e.  ( X /. R
) )
2827snssd 3903 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  { S }  C_  ( X /. R ) )
29 ssequn2 3480 . . . . . . . . . . . 12  |-  ( { S }  C_  ( X /. R )  <->  ( ( X /. R )  u. 
{ S } )  =  ( X /. R ) )
3028, 29sylib 189 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( X /. R
)  u.  { S } )  =  ( X /. R ) )
3114, 30syl5eq 2448 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( ( X /. R )  \  { S } )  u.  { S } )  =  ( X /. R ) )
3231unieqd 3986 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( ( X /. R )  \  { S } )  u.  { S } )  =  U. ( X /. R ) )
333, 15eqger 14945 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  R  Er  X )
349, 33syl 16 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  R  Er  X )
3520a1i 11 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  R  e.  _V )
3634, 35uniqs2 6925 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. ( X /. R )  =  X )
3732, 36eqtrd 2436 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( ( X /. R )  \  { S } )  u.  { S } )  =  X )
3813, 37syl5eqr 2450 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. ( ( X /. R )  \  { S } )  u.  U. { S } )  =  X )
3912, 38eqtr3d 2438 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. ( ( X /. R )  \  { S } )  u.  S
)  =  X )
40 difss 3434 . . . . . . . . 9  |-  ( ( X /. R ) 
\  { S }
)  C_  ( X /. R )
4140unissi 3998 . . . . . . . 8  |-  U. (
( X /. R
)  \  { S } )  C_  U. ( X /. R )
4241, 36syl5sseq 3356 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( X /. R
)  \  { S } )  C_  X
)
43 df-ne 2569 . . . . . . . . . . . . 13  |-  ( x  =/=  S  <->  -.  x  =  S )
4434adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  R  Er  X )
45 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  x  e.  ( X /. R
) )
4627adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  S  e.  ( X /. R
) )
4744, 45, 46qsdisj 6940 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  (
x  =  S  \/  ( x  i^i  S )  =  (/) ) )
4847ord 367 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  ( -.  x  =  S  ->  ( x  i^i  S
)  =  (/) ) )
49 disj2 3635 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  S )  =  (/)  <->  x  C_  ( _V 
\  S ) )
5048, 49syl6ib 218 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  ( -.  x  =  S  ->  x  C_  ( _V  \  S ) ) )
5143, 50syl5bi 209 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  x  e.  ( X /. R
) )  ->  (
x  =/=  S  ->  x  C_  ( _V  \  S ) ) )
5251expimpd 587 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( x  e.  ( X /. R )  /\  x  =/=  S
)  ->  x  C_  ( _V  \  S ) ) )
53 eldifsn 3887 . . . . . . . . . . 11  |-  ( x  e.  ( ( X /. R )  \  { S } )  <->  ( x  e.  ( X /. R
)  /\  x  =/=  S ) )
54 vex 2919 . . . . . . . . . . . 12  |-  x  e. 
_V
5554elpw 3765 . . . . . . . . . . 11  |-  ( x  e.  ~P ( _V 
\  S )  <->  x  C_  ( _V  \  S ) )
5652, 53, 553imtr4g 262 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
x  e.  ( ( X /. R ) 
\  { S }
)  ->  x  e.  ~P ( _V  \  S
) ) )
5756ssrdv 3314 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( X /. R
)  \  { S } )  C_  ~P ( _V  \  S ) )
58 sspwuni 4136 . . . . . . . . 9  |-  ( ( ( X /. R
)  \  { S } )  C_  ~P ( _V  \  S )  <->  U. ( ( X /. R )  \  { S } )  C_  ( _V  \  S ) )
5957, 58sylib 189 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( X /. R
)  \  { S } )  C_  ( _V  \  S ) )
60 disj2 3635 . . . . . . . 8  |-  ( ( U. ( ( X /. R )  \  { S } )  i^i 
S )  =  (/)  <->  U. ( ( X /. R )  \  { S } )  C_  ( _V  \  S ) )
6159, 60sylibr 204 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. ( ( X /. R )  \  { S } )  i^i  S
)  =  (/) )
62 uneqdifeq 3676 . . . . . . 7  |-  ( ( U. ( ( X /. R )  \  { S } )  C_  X  /\  ( U. (
( X /. R
)  \  { S } )  i^i  S
)  =  (/) )  -> 
( ( U. (
( X /. R
)  \  { S } )  u.  S
)  =  X  <->  ( X  \ 
U. ( ( X /. R )  \  { S } ) )  =  S ) )
6342, 61, 62syl2anc 643 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( U. ( ( X /. R ) 
\  { S }
)  u.  S )  =  X  <->  ( X  \ 
U. ( ( X /. R )  \  { S } ) )  =  S ) )
6439, 63mpbid 202 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( X  \  U. ( ( X /. R ) 
\  { S }
) )  =  S )
658, 64eqtr3d 2438 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. J  \  U. (
( X /. R
)  \  { S } ) )  =  S )
66 topontop 16946 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
675, 66syl 16 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  J  e.  Top )
68 simpl3 962 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( X /. R )  e. 
Fin )
69 diffi 7298 . . . . . . 7  |-  ( ( X /. R )  e.  Fin  ->  (
( X /. R
)  \  { S } )  e.  Fin )
7068, 69syl 16 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( X /. R
)  \  { S } )  e.  Fin )
7154elqs 6916 . . . . . . . . 9  |-  ( x  e.  ( X /. R )  <->  E. y  e.  X  x  =  [ y ] R
)
72 simpll2 997 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  S  e.  (SubGrp `  G )
)
73 subgrcl 14904 . . . . . . . . . . . . . 14  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
7472, 73syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  G  e.  Grp )
753subgss 14900 . . . . . . . . . . . . . . 15  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
769, 75syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  C_  X )
7776adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  S  C_  X )
78 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  y  e.  X )
79 eqid 2404 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
803, 15, 79eqglact 14946 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  S  C_  X  /\  y  e.  X )  ->  [ y ] R  =  ( ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) " S ) )
8174, 77, 78, 80syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  [ y ] R  =  ( ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) " S ) )
82 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  S  e.  ( Clsd `  J
) )
83 eqid 2404 . . . . . . . . . . . . . . . 16  |-  ( z  e.  X  |->  ( y ( +g  `  G
) z ) )  =  ( z  e.  X  |->  ( y ( +g  `  G ) z ) )
8483, 3, 79, 2tgplacthmeo 18086 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  TopGrp  /\  y  e.  X )  ->  (
z  e.  X  |->  ( y ( +g  `  G
) z ) )  e.  ( J  Homeo  J ) )
851, 84sylan 458 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  (
z  e.  X  |->  ( y ( +g  `  G
) z ) )  e.  ( J  Homeo  J ) )
8676, 7sseqtrd 3344 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  C_ 
U. J )
8786adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  S  C_ 
U. J )
88 eqid 2404 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
8988hmeocld 17752 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  X  |->  ( y ( +g  `  G ) z ) )  e.  ( J 
Homeo  J )  /\  S  C_ 
U. J )  -> 
( S  e.  (
Clsd `  J )  <->  ( ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) " S )  e.  ( Clsd `  J
) ) )
9085, 87, 89syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  ( S  e.  ( Clsd `  J )  <->  ( (
z  e.  X  |->  ( y ( +g  `  G
) z ) )
" S )  e.  ( Clsd `  J
) ) )
9182, 90mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  (
( z  e.  X  |->  ( y ( +g  `  G ) z ) ) " S )  e.  ( Clsd `  J
) )
9281, 91eqeltrd 2478 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  [ y ] R  e.  (
Clsd `  J )
)
93 eleq1 2464 . . . . . . . . . . 11  |-  ( x  =  [ y ] R  ->  ( x  e.  ( Clsd `  J
)  <->  [ y ] R  e.  ( Clsd `  J
) ) )
9492, 93syl5ibrcom 214 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  /\  y  e.  X )  ->  (
x  =  [ y ] R  ->  x  e.  ( Clsd `  J
) ) )
9594rexlimdva 2790 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( E. y  e.  X  x  =  [ y ] R  ->  x  e.  ( Clsd `  J
) ) )
9671, 95syl5bi 209 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
x  e.  ( X /. R )  ->  x  e.  ( Clsd `  J ) ) )
9796ssrdv 3314 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( X /. R )  C_  ( Clsd `  J )
)
9897ssdifssd 3445 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  (
( X /. R
)  \  { S } )  C_  ( Clsd `  J ) )
9988unicld 17065 . . . . . 6  |-  ( ( J  e.  Top  /\  ( ( X /. R )  \  { S } )  e.  Fin  /\  ( ( X /. R )  \  { S } )  C_  ( Clsd `  J ) )  ->  U. ( ( X /. R )  \  { S } )  e.  ( Clsd `  J
) )
10067, 70, 98, 99syl3anc 1184 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  U. (
( X /. R
)  \  { S } )  e.  (
Clsd `  J )
)
10188cldopn 17050 . . . . 5  |-  ( U. ( ( X /. R )  \  { S } )  e.  (
Clsd `  J )  ->  ( U. J  \  U. ( ( X /. R )  \  { S } ) )  e.  J )
102100, 101syl 16 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  ( U. J  \  U. (
( X /. R
)  \  { S } ) )  e.  J )
10365, 102eqeltrrd 2479 . . 3  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R )  e. 
Fin )  /\  S  e.  ( Clsd `  J
) )  ->  S  e.  J )
104103ex 424 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R
)  e.  Fin )  ->  ( S  e.  (
Clsd `  J )  ->  S  e.  J ) )
1052opnsubg 18090 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  S  e.  ( Clsd `  J )
)
1061053expia 1155 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( S  e.  J  ->  S  e.  ( Clsd `  J
) ) )
1071063adant3 977 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R
)  e.  Fin )  ->  ( S  e.  J  ->  S  e.  ( Clsd `  J ) ) )
108104, 107impbid 184 1  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  ( X /. R
)  e.  Fin )  ->  ( S  e.  (
Clsd `  J )  <->  S  e.  J ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   {csn 3774   U.cuni 3975    e. cmpt 4226   "cima 4840   ` cfv 5413  (class class class)co 6040    Er wer 6861   [cec 6862   /.cqs 6863   Fincfn 7068   Basecbs 13424   +g cplusg 13484   TopOpenctopn 13604   0gc0g 13678   Grpcgrp 14640  SubGrpcsubg 14893   ~QG cqg 14895   Topctop 16913  TopOnctopon 16914   Clsdccld 17035    Homeo chmeo 17738   TopGrpctgp 18054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-topgen 13622  df-0g 13682  df-mnd 14645  df-plusf 14646  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-eqg 14898  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-cn 17245  df-cnp 17246  df-tx 17547  df-hmeo 17740  df-tmd 18055  df-tgp 18056
  Copyright terms: Public domain W3C validator