MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldlp Structured version   Visualization version   Unicode version

Theorem cldlp 20166
Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
cldlp  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( ( limPt `  J ) `  S )  C_  S
) )

Proof of Theorem cldlp
StepHypRef Expression
1 lpfval.1 . . 3  |-  X  = 
U. J
21iscld3 20080 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( ( cls `  J
) `  S )  =  S ) )
31clslp 20164 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( S  u.  ( ( limPt `  J
) `  S )
) )
43eqeq1d 2453 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( cls `  J ) `  S
)  =  S  <->  ( S  u.  ( ( limPt `  J
) `  S )
)  =  S ) )
5 ssequn2 3607 . . 3  |-  ( ( ( limPt `  J ) `  S )  C_  S  <->  ( S  u.  ( (
limPt `  J ) `  S ) )  =  S )
64, 5syl6bbr 267 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( cls `  J ) `  S
)  =  S  <->  ( ( limPt `  J ) `  S )  C_  S
) )
72, 6bitrd 257 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( ( limPt `  J ) `  S )  C_  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    u. cun 3402    C_ wss 3404   U.cuni 4198   ` cfv 5582   Topctop 19917   Clsdccld 20031   clsccl 20033   limPtclp 20150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-top 19921  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator