MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldllycmp Structured version   Unicode version

Theorem cldllycmp 19098
Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 19089.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
cldllycmp  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e. 𝑛Locally  Comp )

Proof of Theorem cldllycmp
Dummy variables  u  v  w  x  y 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 19076 . . 3  |-  ( J  e. 𝑛Locally 
Comp  ->  J  e.  Top )
2 resttop 18763 . . 3  |-  ( ( J  e.  Top  /\  A  e.  ( Clsd `  J ) )  -> 
( Jt  A )  e.  Top )
31, 2sylan 471 . 2  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e.  Top )
4 elrest 14365 . . . 4  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( x  e.  ( Jt  A )  <->  E. u  e.  J  x  =  ( u  i^i  A ) ) )
5 simpll 753 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  J  e. 𝑛Locally  Comp )
6 simprl 755 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  u  e.  J
)
7 inss1 3569 . . . . . . . . . . 11  |-  ( u  i^i  A )  C_  u
8 simprr 756 . . . . . . . . . . 11  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  y  e.  ( u  i^i  A ) )
97, 8sseldi 3353 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  y  e.  u
)
10 nlly2i 19079 . . . . . . . . . 10  |-  ( ( J  e. 𝑛Locally  Comp  /\  u  e.  J  /\  y  e.  u
)  ->  E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp )
)
115, 6, 9, 10syl3anc 1218 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e. 
Comp ) )
123ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( Jt  A )  e.  Top )
131ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  J  e.  Top )
14 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  e.  ( Clsd `  J ) )
15 simprlr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  w  e.  J )
16 elrestr 14366 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  A  e.  ( Clsd `  J )  /\  w  e.  J )  ->  (
w  i^i  A )  e.  ( Jt  A ) )
1713, 14, 15, 16syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  e.  ( Jt  A ) )
18 simprr1 1036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  w )
19 inss2 3570 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  A )  C_  A
20 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  ( u  i^i  A ) )
2119, 20sseldi 3353 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  A )
2218, 21elind 3539 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  ( w  i^i  A ) )
23 opnneip 18722 . . . . . . . . . . . . . . 15  |-  ( ( ( Jt  A )  e.  Top  /\  ( w  i^i  A
)  e.  ( Jt  A )  /\  y  e.  ( w  i^i  A
) )  ->  (
w  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )
2412, 17, 22, 23syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  e.  ( ( nei `  ( Jt  A ) ) `  {
y } ) )
25 simprr2 1037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  w  C_  s )
26 ssrin 3574 . . . . . . . . . . . . . . 15  |-  ( w 
C_  s  ->  (
w  i^i  A )  C_  ( s  i^i  A
) )
2725, 26syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  C_  ( s  i^i  A ) )
28 inss2 3570 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  C_  A
29 eqid 2442 . . . . . . . . . . . . . . . . . 18  |-  U. J  =  U. J
3029cldss 18632 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( Clsd `  J
)  ->  A  C_  U. J
)
3114, 30syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  C_  U. J )
3229restuni 18765 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  =  U. ( Jt  A ) )
3313, 31, 32syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  =  U. ( Jt  A ) )
3428, 33syl5sseq 3403 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  U. ( Jt  A ) )
35 eqid 2442 . . . . . . . . . . . . . . 15  |-  U. ( Jt  A )  =  U. ( Jt  A )
3635ssnei2 18719 . . . . . . . . . . . . . 14  |-  ( ( ( ( Jt  A )  e.  Top  /\  (
w  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )  /\  ( ( w  i^i  A ) 
C_  ( s  i^i 
A )  /\  (
s  i^i  A )  C_ 
U. ( Jt  A ) ) )  ->  (
s  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )
3712, 24, 27, 34, 36syl22anc 1219 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( ( nei `  ( Jt  A ) ) `  {
y } ) )
38 simprll 761 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  e.  ~P u
)
3938elpwid 3869 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  C_  u )
40 ssrin 3574 . . . . . . . . . . . . . . 15  |-  ( s 
C_  u  ->  (
s  i^i  A )  C_  ( u  i^i  A
) )
4139, 40syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  ( u  i^i  A ) )
42 vex 2974 . . . . . . . . . . . . . . . 16  |-  s  e. 
_V
4342inex1 4432 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  e. 
_V
4443elpw 3865 . . . . . . . . . . . . . 14  |-  ( ( s  i^i  A )  e.  ~P ( u  i^i  A )  <->  ( s  i^i  A )  C_  (
u  i^i  A )
)
4541, 44sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ~P (
u  i^i  A )
)
4637, 45elind 3539 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) )
4728a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  A )
48 restabs 18768 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( s  i^i  A
)  C_  A  /\  A  e.  ( Clsd `  J ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
4913, 47, 14, 48syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
50 inss1 3569 . . . . . . . . . . . . . . . 16  |-  ( s  i^i  A )  C_  s
5150a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  s )
52 restabs 18768 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( s  i^i  A
)  C_  s  /\  s  e.  ~P u
)  ->  ( ( Jt  s )t  ( s  i^i 
A ) )  =  ( Jt  ( s  i^i 
A ) ) )
5313, 51, 38, 52syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
5449, 53eqtr4d 2477 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( ( Jt  s )t  ( s  i^i 
A ) ) )
55 simprr3 1038 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( Jt  s )  e. 
Comp )
56 incom 3542 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  =  ( A  i^i  s
)
57 eqid 2442 . . . . . . . . . . . . . . . . 17  |-  ( A  i^i  s )  =  ( A  i^i  s
)
58 ineq1 3544 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  A  ->  (
v  i^i  s )  =  ( A  i^i  s ) )
5958eqeq2d 2453 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  A  ->  (
( A  i^i  s
)  =  ( v  i^i  s )  <->  ( A  i^i  s )  =  ( A  i^i  s ) ) )
6059rspcev 3072 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ( Clsd `  J )  /\  ( A  i^i  s )  =  ( A  i^i  s
) )  ->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) )
6114, 57, 60sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  E. v  e.  ( Clsd `  J ) ( A  i^i  s )  =  ( v  i^i  s ) )
62 simplrl 759 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  u  e.  J )
63 elssuni 4120 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  J  ->  u  C_ 
U. J )
6462, 63syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  u  C_  U. J )
6539, 64sstrd 3365 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  C_  U. J )
6629restcld 18775 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  s  C_  U. J )  ->  ( ( A  i^i  s )  e.  ( Clsd `  ( Jt  s ) )  <->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) ) )
6713, 65, 66syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( A  i^i  s )  e.  (
Clsd `  ( Jt  s
) )  <->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) ) )
6861, 67mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( A  i^i  s
)  e.  ( Clsd `  ( Jt  s ) ) )
6956, 68syl5eqel 2526 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( Clsd `  ( Jt  s ) ) )
70 cmpcld 19004 . . . . . . . . . . . . . 14  |-  ( ( ( Jt  s )  e. 
Comp  /\  ( s  i^i 
A )  e.  (
Clsd `  ( Jt  s
) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  e.  Comp )
7155, 69, 70syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  e.  Comp )
7254, 71eqeltrd 2516 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  e.  Comp )
73 oveq2 6098 . . . . . . . . . . . . . 14  |-  ( v  =  ( s  i^i 
A )  ->  (
( Jt  A )t  v )  =  ( ( Jt  A )t  ( s  i^i  A ) ) )
7473eleq1d 2508 . . . . . . . . . . . . 13  |-  ( v  =  ( s  i^i 
A )  ->  (
( ( Jt  A )t  v )  e.  Comp  <->  ( ( Jt  A )t  ( s  i^i 
A ) )  e. 
Comp ) )
7574rspcev 3072 . . . . . . . . . . . 12  |-  ( ( ( s  i^i  A
)  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) )  /\  ( ( Jt  A )t  ( s  i^i  A
) )  e.  Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
7646, 72, 75syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
7776expr 615 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( s  e.  ~P u  /\  w  e.  J
) )  ->  (
( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e. 
Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
7877rexlimdvva 2847 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  ( E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
7911, 78mpd 15 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
8079anassrs 648 . . . . . . 7  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  u  e.  J
)  /\  y  e.  ( u  i^i  A ) )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
8180ralrimiva 2798 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  u  e.  J )  ->  A. y  e.  ( u  i^i  A
) E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
82 pweq 3862 . . . . . . . . 9  |-  ( x  =  ( u  i^i 
A )  ->  ~P x  =  ~P (
u  i^i  A )
)
8382ineq2d 3551 . . . . . . . 8  |-  ( x  =  ( u  i^i 
A )  ->  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x )  =  ( ( ( nei `  ( Jt  A ) ) `  {
y } )  i^i 
~P ( u  i^i 
A ) ) )
8483rexeqdv 2923 . . . . . . 7  |-  ( x  =  ( u  i^i 
A )  ->  ( E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp  <->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8584raleqbi1dv 2924 . . . . . 6  |-  ( x  =  ( u  i^i 
A )  ->  ( A. y  e.  x  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp  <->  A. y  e.  ( u  i^i  A
) E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8681, 85syl5ibrcom 222 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  u  e.  J )  ->  (
x  =  ( u  i^i  A )  ->  A. y  e.  x  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
8786rexlimdva 2840 . . . 4  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
A )  ->  A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
884, 87sylbid 215 . . 3  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( x  e.  ( Jt  A )  ->  A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
8988ralrimiv 2797 . 2  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  A. x  e.  ( Jt  A ) A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
90 isnlly 19072 . 2  |-  ( ( Jt  A )  e. 𝑛Locally  Comp  <->  ( ( Jt  A )  e.  Top  /\ 
A. x  e.  ( Jt  A ) A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
913, 89, 90sylanbrc 664 1  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e. 𝑛Locally  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2714   E.wrex 2715    i^i cin 3326    C_ wss 3327   ~Pcpw 3859   {csn 3876   U.cuni 4090   ` cfv 5417  (class class class)co 6090   ↾t crest 14358   Topctop 18497   Clsdccld 18619   neicnei 18700   Compccmp 18988  𝑛Locally cnlly 19068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-er 7100  df-en 7310  df-dom 7311  df-fin 7313  df-fi 7660  df-rest 14360  df-topgen 14381  df-top 18502  df-bases 18504  df-topon 18505  df-cld 18622  df-nei 18701  df-cmp 18989  df-nlly 19070
This theorem is referenced by:  rellycmp  20528
  Copyright terms: Public domain W3C validator