MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldcls Structured version   Unicode version

Theorem cldcls 19651
Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
cldcls  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  S )

Proof of Theorem cldcls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cldrcl 19635 . . 3  |-  ( S  e.  ( Clsd `  J
)  ->  J  e.  Top )
2 eqid 2396 . . . 4  |-  U. J  =  U. J
32cldss 19638 . . 3  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  U. J
)
42clsval 19646 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
51, 3, 4syl2anc 659 . 2  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  |^| { x  e.  ( Clsd `  J )  |  S  C_  x } )
6 intmin 4236 . 2  |-  ( S  e.  ( Clsd `  J
)  ->  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x }  =  S
)
75, 6eqtrd 2437 1  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1399    e. wcel 1836   {crab 2750    C_ wss 3406   U.cuni 4180   |^|cint 4216   ` cfv 5513   Topctop 19502   Clsdccld 19625   clsccl 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-ral 2751  df-rex 2752  df-reu 2753  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-int 4217  df-iun 4262  df-br 4385  df-opab 4443  df-mpt 4444  df-id 4726  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-top 19507  df-cld 19628  df-cls 19630
This theorem is referenced by:  iscld3  19674  clsss2  19682  cncls2  19883  lmcld  19913  fclscmp  20639  metnrmlem1a  21470  lebnumlem1  21569  cmetss  21861  minveclem4  21955  hauseqcn  28066
  Copyright terms: Public domain W3C validator