Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldbnd Structured version   Unicode version

Theorem cldbnd 30793
Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
Hypothesis
Ref Expression
opnbnd.1  |-  X  = 
U. J
Assertion
Ref Expression
cldbnd  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  <->  ( ( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A ) )

Proof of Theorem cldbnd
StepHypRef Expression
1 opnbnd.1 . . . . 5  |-  X  = 
U. J
21iscld3 20004 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  <->  ( ( cls `  J
) `  A )  =  A ) )
3 eqimss 3513 . . . 4  |-  ( ( ( cls `  J
) `  A )  =  A  ->  ( ( cls `  J ) `
 A )  C_  A )
42, 3syl6bi 231 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  ->  ( ( cls `  J
) `  A )  C_  A ) )
5 ssinss1 3687 . . 3  |-  ( ( ( cls `  J
) `  A )  C_  A  ->  ( (
( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A )
64, 5syl6 34 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  ->  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  C_  A
) )
7 sslin 3685 . . . . . 6  |-  ( ( ( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A  ->  (
( X  \  A
)  i^i  ( (
( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  C_  ( ( X  \  A )  i^i 
A ) )
87adantl 467 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  C_  A
)  ->  ( ( X  \  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  C_  ( ( X  \  A )  i^i  A
) )
9 incom 3652 . . . . . 6  |-  ( ( X  \  A )  i^i  A )  =  ( A  i^i  ( X  \  A ) )
10 disjdif 3864 . . . . . 6  |-  ( A  i^i  ( X  \  A ) )  =  (/)
119, 10eqtri 2449 . . . . 5  |-  ( ( X  \  A )  i^i  A )  =  (/)
12 sseq0 3791 . . . . 5  |-  ( ( ( ( X  \  A )  i^i  (
( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  C_  ( ( X  \  A )  i^i 
A )  /\  (
( X  \  A
)  i^i  A )  =  (/) )  ->  (
( X  \  A
)  i^i  ( (
( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  =  (/) )
138, 11, 12sylancl 666 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  C_  A
)  ->  ( ( X  \  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/) )
1413ex 435 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( ( cls `  J ) `
 A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A  ->  (
( X  \  A
)  i^i  ( (
( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  =  (/) ) )
15 incom 3652 . . . . . . . 8  |-  ( ( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) )  =  ( ( ( cls `  J ) `
 ( X  \  A ) )  i^i  ( ( cls `  J
) `  A )
)
16 dfss4 3704 . . . . . . . . . . 11  |-  ( A 
C_  X  <->  ( X  \  ( X  \  A
) )  =  A )
17 fveq2 5872 . . . . . . . . . . . 12  |-  ( ( X  \  ( X 
\  A ) )  =  A  ->  (
( cls `  J
) `  ( X  \  ( X  \  A
) ) )  =  ( ( cls `  J
) `  A )
)
1817eqcomd 2428 . . . . . . . . . . 11  |-  ( ( X  \  ( X 
\  A ) )  =  A  ->  (
( cls `  J
) `  A )  =  ( ( cls `  J ) `  ( X  \  ( X  \  A ) ) ) )
1916, 18sylbi 198 . . . . . . . . . 10  |-  ( A 
C_  X  ->  (
( cls `  J
) `  A )  =  ( ( cls `  J ) `  ( X  \  ( X  \  A ) ) ) )
2019adantl 467 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( cls `  J
) `  A )  =  ( ( cls `  J ) `  ( X  \  ( X  \  A ) ) ) )
2120ineq2d 3661 . . . . . . . 8  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( cls `  J ) `  ( X  \  A ) )  i^i  ( ( cls `  J ) `  A
) )  =  ( ( ( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )
2215, 21syl5eq 2473 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  =  ( ( ( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )
2322ineq2d 3661 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \  A )  i^i  (
( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  =  ( ( X  \  A )  i^i  ( ( ( cls `  J ) `
 ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) ) )
2423eqeq1d 2422 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( X 
\  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/) 
<->  ( ( X  \  A )  i^i  (
( ( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )  =  (/) ) )
25 difss 3589 . . . . . . 7  |-  ( X 
\  A )  C_  X
261opnbnd 30792 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( X  \  A ) 
C_  X )  -> 
( ( X  \  A )  e.  J  <->  ( ( X  \  A
)  i^i  ( (
( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )  =  (/) ) )
2725, 26mpan2 675 . . . . . 6  |-  ( J  e.  Top  ->  (
( X  \  A
)  e.  J  <->  ( ( X  \  A )  i^i  ( ( ( cls `  J ) `  ( X  \  A ) )  i^i  ( ( cls `  J ) `  ( X  \  ( X  \  A ) ) ) ) )  =  (/) ) )
2827adantr 466 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \  A )  e.  J  <->  ( ( X  \  A
)  i^i  ( (
( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )  =  (/) ) )
2924, 28bitr4d 259 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( X 
\  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/) 
<->  ( X  \  A
)  e.  J ) )
301opncld 19972 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( X  \  A )  e.  J )  -> 
( X  \  ( X  \  A ) )  e.  ( Clsd `  J
) )
3130ex 435 . . . . . 6  |-  ( J  e.  Top  ->  (
( X  \  A
)  e.  J  -> 
( X  \  ( X  \  A ) )  e.  ( Clsd `  J
) ) )
3231adantr 466 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \  A )  e.  J  ->  ( X  \  ( X  \  A ) )  e.  ( Clsd `  J
) ) )
33 eleq1 2492 . . . . . . 7  |-  ( ( X  \  ( X 
\  A ) )  =  A  ->  (
( X  \  ( X  \  A ) )  e.  ( Clsd `  J
)  <->  A  e.  ( Clsd `  J ) ) )
3416, 33sylbi 198 . . . . . 6  |-  ( A 
C_  X  ->  (
( X  \  ( X  \  A ) )  e.  ( Clsd `  J
)  <->  A  e.  ( Clsd `  J ) ) )
3534adantl 467 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \ 
( X  \  A
) )  e.  (
Clsd `  J )  <->  A  e.  ( Clsd `  J
) ) )
3632, 35sylibd 217 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \  A )  e.  J  ->  A  e.  ( Clsd `  J ) ) )
3729, 36sylbid 218 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( X 
\  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/)  ->  A  e.  (
Clsd `  J )
) )
3814, 37syld 45 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( ( cls `  J ) `
 A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A  ->  A  e.  ( Clsd `  J
) ) )
396, 38impbid 193 1  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  <->  ( ( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867    \ cdif 3430    i^i cin 3432    C_ wss 3433   (/)c0 3758   U.cuni 4213   ` cfv 5592   Topctop 19841   Clsdccld 19955   clsccl 19957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-top 19845  df-cld 19958  df-ntr 19959  df-cls 19960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator