MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatleglb Structured version   Unicode version

Theorem clatleglb 15630
Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
clatglb.b  |-  B  =  ( Base `  K
)
clatglb.l  |-  .<_  =  ( le `  K )
clatglb.g  |-  G  =  ( glb `  K
)
Assertion
Ref Expression
clatleglb  |-  ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  ->  ( X  .<_  ( G `  S )  <->  A. y  e.  S  X  .<_  y ) )
Distinct variable groups:    y, B    y, G    y, K    y,  .<_   
y, S    y, X

Proof of Theorem clatleglb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 clatglb.b . . . . . . 7  |-  B  =  ( Base `  K
)
2 clatglb.l . . . . . . 7  |-  .<_  =  ( le `  K )
3 clatglb.g . . . . . . 7  |-  G  =  ( glb `  K
)
41, 2, 3clatglble 15629 . . . . . 6  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  y  e.  S )  ->  ( G `  S )  .<_  y )
543expa 1196 . . . . 5  |-  ( ( ( K  e.  CLat  /\  S  C_  B )  /\  y  e.  S
)  ->  ( G `  S )  .<_  y )
653adantl2 1153 . . . 4  |-  ( ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  /\  y  e.  S )  ->  ( G `  S
)  .<_  y )
7 simpl1 999 . . . . . 6  |-  ( ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  /\  y  e.  S )  ->  K  e.  CLat )
8 clatl 15620 . . . . . 6  |-  ( K  e.  CLat  ->  K  e. 
Lat )
97, 8syl 16 . . . . 5  |-  ( ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  /\  y  e.  S )  ->  K  e.  Lat )
10 simpl2 1000 . . . . 5  |-  ( ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  /\  y  e.  S )  ->  X  e.  B )
111, 3clatglbcl 15618 . . . . . . 7  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( G `  S )  e.  B )
12113adant2 1015 . . . . . 6  |-  ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  ->  ( G `  S )  e.  B )
1312adantr 465 . . . . 5  |-  ( ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  /\  y  e.  S )  ->  ( G `  S
)  e.  B )
14 ssel 3503 . . . . . . 7  |-  ( S 
C_  B  ->  (
y  e.  S  -> 
y  e.  B ) )
15143ad2ant3 1019 . . . . . 6  |-  ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  ->  (
y  e.  S  -> 
y  e.  B ) )
1615imp 429 . . . . 5  |-  ( ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  /\  y  e.  S )  ->  y  e.  B )
171, 2lattr 15560 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  ( G `  S
)  e.  B  /\  y  e.  B )
)  ->  ( ( X  .<_  ( G `  S )  /\  ( G `  S )  .<_  y )  ->  X  .<_  y ) )
189, 10, 13, 16, 17syl13anc 1230 . . . 4  |-  ( ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  /\  y  e.  S )  ->  ( ( X  .<_  ( G `  S )  /\  ( G `  S )  .<_  y )  ->  X  .<_  y ) )
196, 18mpan2d 674 . . 3  |-  ( ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  /\  y  e.  S )  ->  ( X  .<_  ( G `
 S )  ->  X  .<_  y ) )
2019ralrimdva 2885 . 2  |-  ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  ->  ( X  .<_  ( G `  S )  ->  A. y  e.  S  X  .<_  y ) )
211, 2, 3clatglb 15628 . . . . . . 7  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( A. y  e.  S  ( G `  S ) 
.<_  y  /\  A. z  e.  B  ( A. y  e.  S  z  .<_  y  ->  z  .<_  ( G `  S ) ) ) )
2221simprd 463 . . . . . 6  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  A. z  e.  B  ( A. y  e.  S  z  .<_  y  ->  z  .<_  ( G `  S ) ) )
23 breq1 4456 . . . . . . . . 9  |-  ( z  =  X  ->  (
z  .<_  y  <->  X  .<_  y ) )
2423ralbidv 2906 . . . . . . . 8  |-  ( z  =  X  ->  ( A. y  e.  S  z  .<_  y  <->  A. y  e.  S  X  .<_  y ) )
25 breq1 4456 . . . . . . . 8  |-  ( z  =  X  ->  (
z  .<_  ( G `  S )  <->  X  .<_  ( G `  S ) ) )
2624, 25imbi12d 320 . . . . . . 7  |-  ( z  =  X  ->  (
( A. y  e.  S  z  .<_  y  -> 
z  .<_  ( G `  S ) )  <->  ( A. y  e.  S  X  .<_  y  ->  X  .<_  ( G `  S ) ) ) )
2726rspccv 3216 . . . . . 6  |-  ( A. z  e.  B  ( A. y  e.  S  z  .<_  y  ->  z  .<_  ( G `  S
) )  ->  ( X  e.  B  ->  ( A. y  e.  S  X  .<_  y  ->  X  .<_  ( G `  S
) ) ) )
2822, 27syl 16 . . . . 5  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( X  e.  B  ->  ( A. y  e.  S  X  .<_  y  ->  X  .<_  ( G `  S
) ) ) )
2928ex 434 . . . 4  |-  ( K  e.  CLat  ->  ( S 
C_  B  ->  ( X  e.  B  ->  ( A. y  e.  S  X  .<_  y  ->  X  .<_  ( G `  S
) ) ) ) )
3029com23 78 . . 3  |-  ( K  e.  CLat  ->  ( X  e.  B  ->  ( S  C_  B  ->  ( A. y  e.  S  X  .<_  y  ->  X  .<_  ( G `  S
) ) ) ) )
31303imp 1190 . 2  |-  ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  ->  ( A. y  e.  S  X  .<_  y  ->  X  .<_  ( G `  S
) ) )
3220, 31impbid 191 1  |-  ( ( K  e.  CLat  /\  X  e.  B  /\  S  C_  B )  ->  ( X  .<_  ( G `  S )  <->  A. y  e.  S  X  .<_  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817    C_ wss 3481   class class class wbr 4453   ` cfv 5594   Basecbs 14507   lecple 14579   glbcglb 15447   Latclat 15549   CLatccla 15611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-oprab 6299  df-poset 15450  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-lat 15550  df-clat 15612
This theorem is referenced by:  clatglbss  15631  pmapglbx  34966  diaglbN  36253  dihglblem2N  36492  dihglbcpreN  36498  dihglblem6  36538  dochvalr  36555
  Copyright terms: Public domain W3C validator