MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbcl Structured version   Unicode version

Theorem clatglbcl 15601
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatglbcl.b  |-  B  =  ( Base `  K
)
clatglbcl.g  |-  G  =  ( glb `  K
)
Assertion
Ref Expression
clatglbcl  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( G `  S )  e.  B )

Proof of Theorem clatglbcl
StepHypRef Expression
1 clatglbcl.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2467 . . 3  |-  ( lub `  K )  =  ( lub `  K )
3 clatglbcl.g . . 3  |-  G  =  ( glb `  K
)
41, 2, 3clatlem 15598 . 2  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  (
( ( lub `  K
) `  S )  e.  B  /\  ( G `  S )  e.  B ) )
54simprd 463 1  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( G `  S )  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3476   ` cfv 5588   Basecbs 14490   lubclub 15429   glbcglb 15430   CLatccla 15594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-lub 15461  df-glb 15462  df-clat 15595
This theorem is referenced by:  clatleglb  15613  clatglbss  15614  clatp0cl  27349  glbconN  34191  pmapglbx  34583  diaglbN  35870  diaintclN  35873  dibglbN  35981  dibintclN  35982  dihglblem2N  36109  dihglblem3N  36110  dihglblem4  36112  dihglbcpreN  36115  dihglblem6  36155  dihintcl  36159  dochval2  36167  dochcl  36168  dochvalr  36172  dochss  36180
  Copyright terms: Public domain W3C validator