MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  class2set Structured version   Unicode version

Theorem class2set 4570
Description: Construct, from any class  A, a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.)
Assertion
Ref Expression
class2set  |-  { x  e.  A  |  A  e.  _V }  e.  _V
Distinct variable group:    x, A

Proof of Theorem class2set
StepHypRef Expression
1 rabexg 4553 . 2  |-  ( A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  e.  _V )
2 simpl 457 . . . . 5  |-  ( ( -.  A  e.  _V  /\  x  e.  A )  ->  -.  A  e.  _V )
32nrexdv 2925 . . . 4  |-  ( -.  A  e.  _V  ->  -. 
E. x  e.  A  A  e.  _V )
4 rabn0 3768 . . . . 5  |-  ( { x  e.  A  |  A  e.  _V }  =/=  (/)  <->  E. x  e.  A  A  e.  _V )
54necon1bbii 2716 . . . 4  |-  ( -. 
E. x  e.  A  A  e.  _V  <->  { x  e.  A  |  A  e.  _V }  =  (/) )
63, 5sylib 196 . . 3  |-  ( -.  A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  =  (/) )
7 0ex 4533 . . 3  |-  (/)  e.  _V
86, 7syl6eqel 2550 . 2  |-  ( -.  A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  e.  _V )
91, 8pm2.61i 164 1  |-  { x  e.  A  |  A  e.  _V }  e.  _V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1370    e. wcel 1758   E.wrex 2800   {crab 2803   _Vcvv 3078   (/)c0 3748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-dif 3442  df-in 3446  df-ss 3453  df-nul 3749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator