Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cla4gf Unicode version

Theorem cla4gf 2801
 Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
Hypotheses
Ref Expression
cla4gf.1
cla4gf.2
cla4gf.3
Assertion
Ref Expression
cla4gf

Proof of Theorem cla4gf
StepHypRef Expression
1 cla4gf.2 . . 3
2 cla4gf.1 . . 3
31, 2cla4gft 2798 . 2
4 cla4gf.3 . 2
53, 4mpg 1542 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178  wal 1532  wnf 1539   wceq 1619   wcel 1621  wnfc 2372 This theorem is referenced by:  cla4egf  2802  cla4gv  2805  rcla4  2815  elabgt  2848  eusvnf  4420  sumeq2w  12042 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729
 Copyright terms: Public domain W3C validator