MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreb Structured version   Unicode version

Theorem cjreb 13105
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjreb  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )

Proof of Theorem cjreb
StepHypRef Expression
1 recl 13092 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 9652 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 9581 . . . . . 6  |-  _i  e.  CC
4 imcl 13093 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 9652 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 9606 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 661 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negsubd 9973 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  -u (
_i  x.  ( Im `  A ) ) )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
9 mulneg2 10035 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
103, 5, 9sylancr 661 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1110oveq2d 6294 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( ( Re
`  A )  + 
-u ( _i  x.  ( Im `  A ) ) ) )
12 remim 13099 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
138, 11, 123eqtr4rd 2454 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  +  ( _i  x.  -u (
Im `  A )
) ) )
14 replim 13098 . . 3  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
1513, 14eqeq12d 2424 . 2  |-  ( A  e.  CC  ->  (
( * `  A
)  =  A  <->  ( (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) )  =  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
165negcld 9954 . . . 4  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
17 mulcl 9606 . . . 4  |-  ( ( _i  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( _i  x.  -u ( Im `  A
) )  e.  CC )
183, 16, 17sylancr 661 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  e.  CC )
192, 18, 7addcand 9817 . 2  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) )  =  ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  <-> 
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) ) ) )
20 eqcom 2411 . . . 4  |-  ( -u ( Im `  A )  =  ( Im `  A )  <->  ( Im `  A )  =  -u ( Im `  A ) )
215eqnegd 10306 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  -u (
Im `  A )  <->  ( Im `  A )  =  0 ) )
2220, 21syl5bb 257 . . 3  |-  ( A  e.  CC  ->  ( -u ( Im `  A
)  =  ( Im
`  A )  <->  ( Im `  A )  =  0 ) )
23 ine0 10033 . . . . . 6  |-  _i  =/=  0
243, 23pm3.2i 453 . . . . 5  |-  ( _i  e.  CC  /\  _i  =/=  0 )
2524a1i 11 . . . 4  |-  ( A  e.  CC  ->  (
_i  e.  CC  /\  _i  =/=  0 ) )
26 mulcan 10227 . . . 4  |-  ( (
-u ( Im `  A )  e.  CC  /\  ( Im `  A
)  e.  CC  /\  ( _i  e.  CC  /\  _i  =/=  0 ) )  ->  ( (
_i  x.  -u ( Im
`  A ) )  =  ( _i  x.  ( Im `  A ) )  <->  -u ( Im `  A )  =  ( Im `  A ) ) )
2716, 5, 25, 26syl3anc 1230 . . 3  |-  ( A  e.  CC  ->  (
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) )  <->  -u ( Im
`  A )  =  ( Im `  A
) ) )
28 reim0b 13101 . . 3  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
2922, 27, 283bitr4d 285 . 2  |-  ( A  e.  CC  ->  (
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) )  <->  A  e.  RR ) )
3015, 19, 293bitrrd 280 1  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   ` cfv 5569  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522   _ici 9524    + caddc 9525    x. cmul 9527    - cmin 9841   -ucneg 9842   *ccj 13078   Recre 13079   Imcim 13080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-2 10635  df-cj 13081  df-re 13082  df-im 13083
This theorem is referenced by:  cjre  13121  cjmulrcl  13126  cjrebi  13156  cjrebd  13184  hire  26425
  Copyright terms: Public domain W3C validator