MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjexp Structured version   Unicode version

Theorem cjexp 12639
Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
Assertion
Ref Expression
cjexp  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( * `  ( A ^ N ) )  =  ( ( * `
 A ) ^ N ) )

Proof of Theorem cjexp
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6099 . . . . . 6  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
21fveq2d 5695 . . . . 5  |-  ( j  =  0  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ 0 ) ) )
3 oveq2 6099 . . . . 5  |-  ( j  =  0  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
0 ) )
42, 3eqeq12d 2457 . . . 4  |-  ( j  =  0  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ 0 ) )  =  ( ( * `  A
) ^ 0 ) ) )
54imbi2d 316 . . 3  |-  ( j  =  0  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ 0 ) )  =  ( ( * `  A
) ^ 0 ) ) ) )
6 oveq2 6099 . . . . . 6  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
76fveq2d 5695 . . . . 5  |-  ( j  =  k  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ k ) ) )
8 oveq2 6099 . . . . 5  |-  ( j  =  k  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
k ) )
97, 8eqeq12d 2457 . . . 4  |-  ( j  =  k  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ k
) )  =  ( ( * `  A
) ^ k ) ) )
109imbi2d 316 . . 3  |-  ( j  =  k  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ k
) )  =  ( ( * `  A
) ^ k ) ) ) )
11 oveq2 6099 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1211fveq2d 5695 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ ( k  +  1 ) ) ) )
13 oveq2 6099 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
1412, 13eqeq12d 2457 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ (
k  +  1 ) ) )  =  ( ( * `  A
) ^ ( k  +  1 ) ) ) )
1514imbi2d 316 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ (
k  +  1 ) ) )  =  ( ( * `  A
) ^ ( k  +  1 ) ) ) ) )
16 oveq2 6099 . . . . . 6  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1716fveq2d 5695 . . . . 5  |-  ( j  =  N  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ N ) ) )
18 oveq2 6099 . . . . 5  |-  ( j  =  N  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^ N ) )
1917, 18eqeq12d 2457 . . . 4  |-  ( j  =  N  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ N
) )  =  ( ( * `  A
) ^ N ) ) )
2019imbi2d 316 . . 3  |-  ( j  =  N  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ N
) )  =  ( ( * `  A
) ^ N ) ) ) )
21 exp0 11869 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2221fveq2d 5695 . . . 4  |-  ( A  e.  CC  ->  (
* `  ( A ^ 0 ) )  =  ( * ` 
1 ) )
23 cjcl 12594 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
24 exp0 11869 . . . . . 6  |-  ( ( * `  A )  e.  CC  ->  (
( * `  A
) ^ 0 )  =  1 )
25 1re 9385 . . . . . . 7  |-  1  e.  RR
26 cjre 12628 . . . . . . 7  |-  ( 1  e.  RR  ->  (
* `  1 )  =  1 )
2725, 26ax-mp 5 . . . . . 6  |-  ( * `
 1 )  =  1
2824, 27syl6eqr 2493 . . . . 5  |-  ( ( * `  A )  e.  CC  ->  (
( * `  A
) ^ 0 )  =  ( * ` 
1 ) )
2923, 28syl 16 . . . 4  |-  ( A  e.  CC  ->  (
( * `  A
) ^ 0 )  =  ( * ` 
1 ) )
3022, 29eqtr4d 2478 . . 3  |-  ( A  e.  CC  ->  (
* `  ( A ^ 0 ) )  =  ( ( * `
 A ) ^
0 ) )
31 expp1 11872 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3231fveq2d 5695 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( * `  ( ( A ^
k )  x.  A
) ) )
33 expcl 11883 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
34 simpl 457 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
35 cjmul 12631 . . . . . . . . . 10  |-  ( ( ( A ^ k
)  e.  CC  /\  A  e.  CC )  ->  ( * `  (
( A ^ k
)  x.  A ) )  =  ( ( * `  ( A ^ k ) )  x.  ( * `  A ) ) )
3633, 34, 35syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  x.  A ) )  =  ( ( * `  ( A ^ k ) )  x.  ( * `  A ) ) )
3732, 36eqtrd 2475 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 ( A ^
k ) )  x.  ( * `  A
) ) )
3837adantr 465 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 ( A ^
k ) )  x.  ( * `  A
) ) )
39 oveq1 6098 . . . . . . . 8  |-  ( ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
( * `  ( A ^ k ) )  x.  ( * `  A ) )  =  ( ( ( * `
 A ) ^
k )  x.  (
* `  A )
) )
40 expp1 11872 . . . . . . . . . 10  |-  ( ( ( * `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  A ) ^ (
k  +  1 ) )  =  ( ( ( * `  A
) ^ k )  x.  ( * `  A ) ) )
4123, 40sylan 471 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  A ) ^ (
k  +  1 ) )  =  ( ( ( * `  A
) ^ k )  x.  ( * `  A ) ) )
4241eqcomd 2448 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( ( * `
 A ) ^
k )  x.  (
* `  A )
)  =  ( ( * `  A ) ^ ( k  +  1 ) ) )
4339, 42sylan9eqr 2497 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( ( * `  ( A ^ k ) )  x.  ( * `
 A ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
4438, 43eqtrd 2475 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
4544exp31 604 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
* `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
4645com12 31 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
* `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
4746a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( A  e.  CC  ->  ( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
485, 10, 15, 20, 30, 47nn0ind 10738 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  (
* `  ( A ^ N ) )  =  ( ( * `  A ) ^ N
) ) )
4948impcom 430 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( * `  ( A ^ N ) )  =  ( ( * `
 A ) ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287   NN0cn0 10579   ^cexp 11865   *ccj 12585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-uz 10862  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590
This theorem is referenced by:  cjexpd  12702  efcj  13377  plycjlem  21743  plyrecj  21746  atandmcj  22304
  Copyright terms: Public domain W3C validator