MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjcld Structured version   Unicode version

Theorem cjcld 12677
Description: Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
recld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
cjcld  |-  ( ph  ->  ( * `  A
)  e.  CC )

Proof of Theorem cjcld
StepHypRef Expression
1 recld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 cjcl 12586 . 2  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
31, 2syl 16 1  |-  ( ph  ->  ( * `  A
)  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1756   ` cfv 5413   CCcc 9272   *ccj 12577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-cj 12580
This theorem is referenced by:  absrpcl  12769  absmul  12775  abstri  12810  abs1m  12815  abslem2  12819  sqreulem  12839  gzcjcl  13989  mul4sqlem  14006  gzrngunit  17853  cphassr  20705  cph2ass  20706  tchcphlem2  20726  pjthlem1  20899  itgabs  21287  dvcj  21399  dvmptre  21418  dvmptim  21419  tanregt0  21970  logcj  22030  cosargd  22032  root1cj  22169  lawcoslem1  22186  isosctrlem2  22192  asinlem3  22241  atandmcj  22279  atancj  22280  sum2dchr  22588  rpvmasum2  22736  dchrisum0re  22737  pjhthlem1  24745  riesz3i  25417  itgabsnc  28414  ftc1cnnclem  28418  ftc2nc  28429  sigarim  29840  sigarac  29841  sigaraf  29842  sigarmf  29843  sigarls  29846  sigardiv  29850  sharhght  29854
  Copyright terms: Public domain W3C validator