HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chub2i Structured version   Unicode version

Theorem chub2i 24895
Description:  CH join is an upper bound of two elements. (Contributed by NM, 5-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1  |-  A  e. 
CH
chjcl.2  |-  B  e. 
CH
Assertion
Ref Expression
chub2i  |-  A  C_  ( B  vH  A )

Proof of Theorem chub2i
StepHypRef Expression
1 ch0le.1 . . 3  |-  A  e. 
CH
2 chjcl.2 . . 3  |-  B  e. 
CH
31, 2chub1i 24894 . 2  |-  A  C_  ( A  vH  B )
41, 2chjcomi 24893 . 2  |-  ( A  vH  B )  =  ( B  vH  A
)
53, 4sseqtri 3409 1  |-  A  C_  ( B  vH  A )
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1756    C_ wss 3349  (class class class)co 6112   CHcch 24353    vH chj 24357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383  ax-hilex 24423  ax-hfvadd 24424  ax-hvcom 24425  ax-hvass 24426  ax-hv0cl 24427  ax-hvaddid 24428  ax-hfvmul 24429  ax-hvmulid 24430  ax-hvmulass 24431  ax-hvdistr1 24432  ax-hvdistr2 24433  ax-hvmul0 24434  ax-hfi 24503  ax-his1 24506  ax-his2 24507  ax-his3 24508  ax-his4 24509  ax-hcompl 24626
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-icc 11328  df-fz 11459  df-fzo 11570  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-hom 14283  df-cco 14284  df-rest 14382  df-topn 14383  df-0g 14401  df-gsum 14402  df-topgen 14403  df-pt 14404  df-prds 14407  df-xrs 14461  df-qtop 14466  df-imas 14467  df-xps 14469  df-mre 14545  df-mrc 14546  df-acs 14548  df-mnd 15436  df-submnd 15486  df-mulg 15569  df-cntz 15856  df-cmn 16300  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-cnfld 17841  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-cn 18853  df-cnp 18854  df-lm 18855  df-haus 18941  df-tx 19157  df-hmeo 19350  df-xms 19917  df-ms 19918  df-tms 19919  df-cau 20789  df-grpo 23700  df-gid 23701  df-ginv 23702  df-gdiv 23703  df-ablo 23791  df-vc 23946  df-nv 23992  df-va 23995  df-ba 23996  df-sm 23997  df-0v 23998  df-vs 23999  df-nmcv 24000  df-ims 24001  df-dip 24118  df-hnorm 24392  df-hvsub 24395  df-hlim 24396  df-hcau 24397  df-sh 24631  df-ch 24646  df-oc 24677  df-shs 24733  df-chj 24735
This theorem is referenced by:  chlejb1i  24901  chdmm1i  24902  chj00i  24912  chj1i  24914  lejdii  24963  cmcmlem  25016  cmbr4i  25026  cmj2i  25030  qlaxr3i  25061  osumcori  25068  mayetes3i  25155  pjclem1  25621  pjci  25626  mdslj1i  25745  mdslj2i  25746  mdsl1i  25747  mdsl2i  25748  cvmdi  25750  mdslmd1lem1  25751  mdslmd1lem2  25752  mdslmd2i  25756  mdexchi  25761  sumdmdlem2  25845  dmdbr5ati  25848
  Copyright terms: Public domain W3C validator