HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chub1i Structured version   Unicode version

Theorem chub1i 26365
Description:  CH join is an upper bound of two elements. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1  |-  A  e. 
CH
chjcl.2  |-  B  e. 
CH
Assertion
Ref Expression
chub1i  |-  A  C_  ( A  vH  B )

Proof of Theorem chub1i
StepHypRef Expression
1 ch0le.1 . . 3  |-  A  e. 
CH
21chshii 26123 . 2  |-  A  e.  SH
3 chjcl.2 . . 3  |-  B  e. 
CH
43chshii 26123 . 2  |-  B  e.  SH
52, 4shub1i 26270 1  |-  A  C_  ( A  vH  B )
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1804    C_ wss 3461  (class class class)co 6281   CHcch 25824    vH chj 25828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575  ax-hilex 25894  ax-hfvadd 25895  ax-hvcom 25896  ax-hvass 25897  ax-hv0cl 25898  ax-hvaddid 25899  ax-hfvmul 25900  ax-hvmulid 25901  ax-hvmulass 25902  ax-hvdistr1 25903  ax-hvdistr2 25904  ax-hvmul0 25905  ax-hfi 25974  ax-his1 25977  ax-his2 25978  ax-his3 25979  ax-his4 25980  ax-hcompl 26097
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-icc 11547  df-fz 11684  df-fzo 11807  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-clim 13293  df-sum 13491  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-mulg 16039  df-cntz 16334  df-cmn 16779  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cn 19706  df-cnp 19707  df-lm 19708  df-haus 19794  df-tx 20041  df-hmeo 20234  df-xms 20801  df-ms 20802  df-tms 20803  df-cau 21673  df-grpo 25171  df-gid 25172  df-ginv 25173  df-gdiv 25174  df-ablo 25262  df-vc 25417  df-nv 25463  df-va 25466  df-ba 25467  df-sm 25468  df-0v 25469  df-vs 25470  df-nmcv 25471  df-ims 25472  df-dip 25589  df-hnorm 25863  df-hvsub 25866  df-hlim 25867  df-hcau 25868  df-sh 26102  df-ch 26117  df-oc 26148  df-shs 26204  df-chj 26206
This theorem is referenced by:  chub2i  26366  chlejb1i  26372  chdmm1i  26373  chnlei  26381  chj00i  26383  lejdii  26434  pjoml4i  26483  pjoml5i  26484  pjoml6i  26485  cmj1i  26500  qlaxr3i  26532  mayetes3i  26626  pjclem1  27092  mdslj1i  27216  mdslmd1lem1  27222  mdslmd2i  27227  mdexchi  27232  atabsi  27298
  Copyright terms: Public domain W3C validator