MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtub Unicode version

Theorem chtub 20949
Description: An upper bound on the Chebyshev function. (Contributed by Mario Carneiro, 13-Mar-2014.) (Revised 22-Sep-2014.)
Assertion
Ref Expression
chtub  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( theta `  N )  <  ( ( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )

Proof of Theorem chtub
Dummy variables  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . . . 5  |-  ( ( |_ `  N )  =  2  ->  ( theta `  ( |_ `  N ) )  =  ( theta `  2 )
)
2 2re 10025 . . . . . . . . . . 11  |-  2  e.  RR
3 1lt2 10098 . . . . . . . . . . 11  |-  1  <  2
4 rplogcl 20452 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
52, 3, 4mp2an 654 . . . . . . . . . 10  |-  ( log `  2 )  e.  RR+
6 elrp 10570 . . . . . . . . . 10  |-  ( ( log `  2 )  e.  RR+  <->  ( ( log `  2 )  e.  RR  /\  0  < 
( log `  2
) ) )
75, 6mpbi 200 . . . . . . . . 9  |-  ( ( log `  2 )  e.  RR  /\  0  <  ( log `  2
) )
87simpli 445 . . . . . . . 8  |-  ( log `  2 )  e.  RR
98recni 9058 . . . . . . 7  |-  ( log `  2 )  e.  CC
109mulid1i 9048 . . . . . 6  |-  ( ( log `  2 )  x.  1 )  =  ( log `  2
)
11 cht2 20908 . . . . . 6  |-  ( theta `  2 )  =  ( log `  2
)
1210, 11eqtr4i 2427 . . . . 5  |-  ( ( log `  2 )  x.  1 )  =  ( theta `  2 )
131, 12syl6reqr 2455 . . . 4  |-  ( ( |_ `  N )  =  2  ->  (
( log `  2
)  x.  1 )  =  ( theta `  ( |_ `  N ) ) )
14 chtfl 20885 . . . . 5  |-  ( N  e.  RR  ->  ( theta `  ( |_ `  N ) )  =  ( theta `  N )
)
1514adantr 452 . . . 4  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( theta `  ( |_ `  N ) )  =  ( theta `  N )
)
1613, 15sylan9eqr 2458 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( ( log `  2 )  x.  1 )  =  (
theta `  N ) )
17 2t2e4 10083 . . . . . . 7  |-  ( 2  x.  2 )  =  4
18 df-4 10016 . . . . . . 7  |-  4  =  ( 3  +  1 )
1917, 18eqtri 2424 . . . . . 6  |-  ( 2  x.  2 )  =  ( 3  +  1 )
20 simplr 732 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  2  <  N )
212a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  2  e.  RR )
22 simpl 444 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  2  <  N )  ->  N  e.  RR )
2322adantr 452 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  N  e.  RR )
24 2pos 10038 . . . . . . . . . 10  |-  0  <  2
252, 24pm3.2i 442 . . . . . . . . 9  |-  ( 2  e.  RR  /\  0  <  2 )
2625a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 2  e.  RR  /\  0  <  2 ) )
27 ltmul2 9817 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 2  < 
N  <->  ( 2  x.  2 )  <  (
2  x.  N ) ) )
2821, 23, 26, 27syl3anc 1184 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 2  <  N  <->  ( 2  x.  2 )  < 
( 2  x.  N
) ) )
2920, 28mpbid 202 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 2  x.  2 )  < 
( 2  x.  N
) )
3019, 29syl5eqbrr 4206 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 3  +  1 )  < 
( 2  x.  N
) )
31 3re 10027 . . . . . . 7  |-  3  e.  RR
3231a1i 11 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  3  e.  RR )
33 1re 9046 . . . . . . 7  |-  1  e.  RR
3433a1i 11 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  1  e.  RR )
35 remulcl 9031 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  x.  N
)  e.  RR )
362, 22, 35sylancr 645 . . . . . . 7  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( 2  x.  N
)  e.  RR )
3736adantr 452 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 2  x.  N )  e.  RR )
3832, 34, 37ltaddsub2d 9583 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( (
3  +  1 )  <  ( 2  x.  N )  <->  1  <  ( ( 2  x.  N
)  -  3 ) ) )
3930, 38mpbid 202 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  1  <  ( ( 2  x.  N
)  -  3 ) )
40 resubcl 9321 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  RR  /\  3  e.  RR )  ->  ( ( 2  x.  N )  -  3 )  e.  RR )
4136, 31, 40sylancl 644 . . . . . 6  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( ( 2  x.  N )  -  3 )  e.  RR )
4241adantr 452 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( (
2  x.  N )  -  3 )  e.  RR )
437a1i 11 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( ( log `  2 )  e.  RR  /\  0  < 
( log `  2
) ) )
44 ltmul2 9817 . . . . 5  |-  ( ( 1  e.  RR  /\  ( ( 2  x.  N )  -  3 )  e.  RR  /\  ( ( log `  2
)  e.  RR  /\  0  <  ( log `  2
) ) )  -> 
( 1  <  (
( 2  x.  N
)  -  3 )  <-> 
( ( log `  2
)  x.  1 )  <  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) ) ) )
4534, 42, 43, 44syl3anc 1184 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( 1  <  ( ( 2  x.  N )  - 
3 )  <->  ( ( log `  2 )  x.  1 )  <  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) ) )
4639, 45mpbid 202 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( ( log `  2 )  x.  1 )  <  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )
4716, 46eqbrtrrd 4194 . 2  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  =  2 )  ->  ( theta `  N )  <  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )
48 chtcl 20845 . . . 4  |-  ( N  e.  RR  ->  ( theta `  N )  e.  RR )
4948ad2antrr 707 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  N
)  e.  RR )
50 reflcl 11160 . . . . . . 7  |-  ( N  e.  RR  ->  ( |_ `  N )  e.  RR )
5150ad2antrr 707 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( |_ `  N )  e.  RR )
52 remulcl 9031 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( |_ `  N )  e.  RR )  -> 
( 2  x.  ( |_ `  N ) )  e.  RR )
532, 51, 52sylancr 645 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( 2  x.  ( |_ `  N
) )  e.  RR )
54 resubcl 9321 . . . . 5  |-  ( ( ( 2  x.  ( |_ `  N ) )  e.  RR  /\  3  e.  RR )  ->  (
( 2  x.  ( |_ `  N ) )  -  3 )  e.  RR )
5553, 31, 54sylancl 644 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( 2  x.  ( |_ `  N ) )  - 
3 )  e.  RR )
56 remulcl 9031 . . . 4  |-  ( ( ( log `  2
)  e.  RR  /\  ( ( 2  x.  ( |_ `  N
) )  -  3 )  e.  RR )  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) )  e.  RR )
578, 55, 56sylancr 645 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) )  e.  RR )
5841adantr 452 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( 2  x.  N )  - 
3 )  e.  RR )
59 remulcl 9031 . . . 4  |-  ( ( ( log `  2
)  e.  RR  /\  ( ( 2  x.  N )  -  3 )  e.  RR )  ->  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) )  e.  RR )
608, 58, 59sylancr 645 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) )  e.  RR )
6115adantr 452 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  ( |_ `  N ) )  =  ( theta `  N
) )
62 simpr 448 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )
63 df-3 10015 . . . . . . 7  |-  3  =  ( 2  +  1 )
6463fveq2i 5690 . . . . . 6  |-  ( ZZ>= ` 
3 )  =  (
ZZ>= `  ( 2  +  1 ) )
6562, 64syl6eleqr 2495 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( |_ `  N )  e.  (
ZZ>= `  3 ) )
66 eluzfz2 11021 . . . . . 6  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  ->  ( |_ `  N )  e.  ( 3 ... ( |_
`  N ) ) )
67 3nn 10090 . . . . . . . 8  |-  3  e.  NN
6867nnzi 10261 . . . . . . 7  |-  3  e.  ZZ
69 oveq2 6048 . . . . . . . 8  |-  ( x  =  3  ->  (
3 ... x )  =  ( 3 ... 3
) )
7069raleqdv 2870 . . . . . . 7  |-  ( x  =  3  ->  ( A. k  e.  (
3 ... x ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
3 ... 3 ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
71 oveq2 6048 . . . . . . . 8  |-  ( x  =  n  ->  (
3 ... x )  =  ( 3 ... n
) )
7271raleqdv 2870 . . . . . . 7  |-  ( x  =  n  ->  ( A. k  e.  (
3 ... x ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
73 oveq2 6048 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
3 ... x )  =  ( 3 ... (
n  +  1 ) ) )
7473raleqdv 2870 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( A. k  e.  (
3 ... x ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
3 ... ( n  + 
1 ) ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
75 oveq2 6048 . . . . . . . 8  |-  ( x  =  ( |_ `  N )  ->  (
3 ... x )  =  ( 3 ... ( |_ `  N ) ) )
7675raleqdv 2870 . . . . . . 7  |-  ( x  =  ( |_ `  N )  ->  ( A. k  e.  (
3 ... x ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
3 ... ( |_ `  N ) ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
77 6lt8 10120 . . . . . . . . . . 11  |-  6  <  8
78 6re 10032 . . . . . . . . . . . . 13  |-  6  e.  RR
79 6pos 10044 . . . . . . . . . . . . 13  |-  0  <  6
8078, 79elrpii 10571 . . . . . . . . . . . 12  |-  6  e.  RR+
81 8re 10034 . . . . . . . . . . . . 13  |-  8  e.  RR
82 8pos 10046 . . . . . . . . . . . . 13  |-  0  <  8
8381, 82elrpii 10571 . . . . . . . . . . . 12  |-  8  e.  RR+
84 logltb 20447 . . . . . . . . . . . 12  |-  ( ( 6  e.  RR+  /\  8  e.  RR+ )  ->  (
6  <  8  <->  ( log `  6 )  <  ( log `  8 ) ) )
8580, 83, 84mp2an 654 . . . . . . . . . . 11  |-  ( 6  <  8  <->  ( log `  6 )  <  ( log `  8 ) )
8677, 85mpbi 200 . . . . . . . . . 10  |-  ( log `  6 )  < 
( log `  8
)
8786a1i 11 . . . . . . . . 9  |-  ( k  e.  ( 3 ... 3 )  ->  ( log `  6 )  < 
( log `  8
) )
88 elfz1eq 11024 . . . . . . . . . . 11  |-  ( k  e.  ( 3 ... 3 )  ->  k  =  3 )
8988fveq2d 5691 . . . . . . . . . 10  |-  ( k  e.  ( 3 ... 3 )  ->  ( theta `  k )  =  ( theta `  3 )
)
90 cht3 20909 . . . . . . . . . 10  |-  ( theta `  3 )  =  ( log `  6
)
9189, 90syl6eq 2452 . . . . . . . . 9  |-  ( k  e.  ( 3 ... 3 )  ->  ( theta `  k )  =  ( log `  6
) )
9288oveq2d 6056 . . . . . . . . . . . . 13  |-  ( k  e.  ( 3 ... 3 )  ->  (
2  x.  k )  =  ( 2  x.  3 ) )
9392oveq1d 6055 . . . . . . . . . . . 12  |-  ( k  e.  ( 3 ... 3 )  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  3 )  - 
3 ) )
94 3cn 10028 . . . . . . . . . . . . . . 15  |-  3  e.  CC
95942timesi 10057 . . . . . . . . . . . . . 14  |-  ( 2  x.  3 )  =  ( 3  +  3 )
9695oveq1i 6050 . . . . . . . . . . . . 13  |-  ( ( 2  x.  3 )  -  3 )  =  ( ( 3  +  3 )  -  3 )
97 pncan 9267 . . . . . . . . . . . . . 14  |-  ( ( 3  e.  CC  /\  3  e.  CC )  ->  ( ( 3  +  3 )  -  3 )  =  3 )
9894, 94, 97mp2an 654 . . . . . . . . . . . . 13  |-  ( ( 3  +  3 )  -  3 )  =  3
9996, 98eqtri 2424 . . . . . . . . . . . 12  |-  ( ( 2  x.  3 )  -  3 )  =  3
10093, 99syl6eq 2452 . . . . . . . . . . 11  |-  ( k  e.  ( 3 ... 3 )  ->  (
( 2  x.  k
)  -  3 )  =  3 )
101100oveq2d 6056 . . . . . . . . . 10  |-  ( k  e.  ( 3 ... 3 )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  3 ) )
102 2rp 10573 . . . . . . . . . . . . . . 15  |-  2  e.  RR+
103 relogcl 20426 . . . . . . . . . . . . . . 15  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
104102, 103ax-mp 8 . . . . . . . . . . . . . 14  |-  ( log `  2 )  e.  RR
105104recni 9058 . . . . . . . . . . . . 13  |-  ( log `  2 )  e.  CC
106105, 94mulcomi 9052 . . . . . . . . . . . 12  |-  ( ( log `  2 )  x.  3 )  =  ( 3  x.  ( log `  2 ) )
107 relogexp 20443 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  3  e.  ZZ )  ->  ( log `  ( 2 ^ 3 ) )  =  ( 3  x.  ( log `  2 ) ) )
108102, 68, 107mp2an 654 . . . . . . . . . . . 12  |-  ( log `  ( 2 ^ 3 ) )  =  ( 3  x.  ( log `  2 ) )
109106, 108eqtr4i 2427 . . . . . . . . . . 11  |-  ( ( log `  2 )  x.  3 )  =  ( log `  (
2 ^ 3 ) )
110 cu2 11434 . . . . . . . . . . . 12  |-  ( 2 ^ 3 )  =  8
111110fveq2i 5690 . . . . . . . . . . 11  |-  ( log `  ( 2 ^ 3 ) )  =  ( log `  8 )
112109, 111eqtri 2424 . . . . . . . . . 10  |-  ( ( log `  2 )  x.  3 )  =  ( log `  8
)
113101, 112syl6eq 2452 . . . . . . . . 9  |-  ( k  e.  ( 3 ... 3 )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( log `  8
) )
11487, 91, 1133brtr4d 4202 . . . . . . . 8  |-  ( k  e.  ( 3 ... 3 )  ->  ( theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )
115114rgen 2731 . . . . . . 7  |-  A. k  e.  ( 3 ... 3
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )
116 df-2 10014 . . . . . . . . . . . . . . . . . 18  |-  2  =  ( 1  +  1 )
117 2cn 10026 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  CC
118 2ne0 10039 . . . . . . . . . . . . . . . . . . . . 21  |-  2  =/=  0
119117, 118dividi 9703 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  /  2 )  =  1
120 eluzle 10454 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( ZZ>= `  3
)  ->  3  <_  n )
12163, 120syl5eqbrr 4206 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  +  1 )  <_  n )
122 2z 10268 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  ZZ
123 eluzelz 10452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  e.  ZZ )
124 zltp1le 10281 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  <  n  <->  ( 2  +  1 )  <_  n ) )
125122, 123, 124sylancr 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  <  n  <->  ( 2  +  1 )  <_  n ) )
126121, 125mpbird 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  2  <  n )
127 eluzelre 10453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  e.  RR )
128 ltdiv1 9830 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 2  < 
n  <->  ( 2  / 
2 )  <  (
n  /  2 ) ) )
1292, 25, 128mp3an13 1270 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  RR  ->  (
2  <  n  <->  ( 2  /  2 )  < 
( n  /  2
) ) )
130127, 129syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  <  n  <->  ( 2  /  2 )  < 
( n  /  2
) ) )
131126, 130mpbid 202 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  /  2 )  < 
( n  /  2
) )
132119, 131syl5eqbrr 4206 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  1  <  ( n  /  2 ) )
133127rehalfcld 10170 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  /  2 )  e.  RR )
134 ltadd1 9451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  RR  /\  ( n  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( 1  <  (
n  /  2 )  <-> 
( 1  +  1 )  <  ( ( n  /  2 )  +  1 ) ) )
13533, 33, 134mp3an13 1270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  /  2 )  e.  RR  ->  (
1  <  ( n  /  2 )  <->  ( 1  +  1 )  < 
( ( n  / 
2 )  +  1 ) ) )
136133, 135syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 1  <  ( n  / 
2 )  <->  ( 1  +  1 )  < 
( ( n  / 
2 )  +  1 ) ) )
137132, 136mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 1  +  1 )  < 
( ( n  / 
2 )  +  1 ) )
138116, 137syl5eqbr 4205 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  2  <  ( ( n  /  2
)  +  1 ) )
139138adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
2  <  ( (
n  /  2 )  +  1 ) )
140 peano2z 10274 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  /  2 )  e.  ZZ  ->  (
( n  /  2
)  +  1 )  e.  ZZ )
141140adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  ZZ )
142 zltp1le 10281 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  ZZ  /\  ( ( n  / 
2 )  +  1 )  e.  ZZ )  ->  ( 2  < 
( ( n  / 
2 )  +  1 )  <->  ( 2  +  1 )  <_  (
( n  /  2
)  +  1 ) ) )
143122, 141, 142sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  <  (
( n  /  2
)  +  1 )  <-> 
( 2  +  1 )  <_  ( (
n  /  2 )  +  1 ) ) )
144139, 143mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  +  1 )  <_  ( (
n  /  2 )  +  1 ) )
14563, 144syl5eqbr 4205 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
3  <_  ( (
n  /  2 )  +  1 ) )
14633a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  1  e.  RR )
147 ltle 9119 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( n  /  2
)  e.  RR )  ->  ( 1  < 
( n  /  2
)  ->  1  <_  ( n  /  2 ) ) )
14833, 133, 147sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 1  <  ( n  / 
2 )  ->  1  <_  ( n  /  2
) ) )
149132, 148mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  1  <_  ( n  /  2 ) )
150146, 133, 133, 149leadd2dd 9597 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  /  2 )  +  1 )  <_ 
( ( n  / 
2 )  +  ( n  /  2 ) ) )
151127recnd 9070 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  e.  CC )
1521512halvesd 10169 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  /  2 )  +  ( n  / 
2 ) )  =  n )
153150, 152breqtrd 4196 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  /  2 )  +  1 )  <_  n )
154153adantr 452 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  <_  n )
155 elfz 11005 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  / 
2 )  +  1 )  e.  ZZ  /\  3  e.  ZZ  /\  n  e.  ZZ )  ->  (
( ( n  / 
2 )  +  1 )  e.  ( 3 ... n )  <->  ( 3  <_  ( ( n  /  2 )  +  1 )  /\  (
( n  /  2
)  +  1 )  <_  n ) ) )
15668, 155mp3an2 1267 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  / 
2 )  +  1 )  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( n  /  2 )  +  1 )  e.  ( 3 ... n )  <-> 
( 3  <_  (
( n  /  2
)  +  1 )  /\  ( ( n  /  2 )  +  1 )  <_  n
) ) )
157140, 123, 156syl2anr 465 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( n  /  2 )  +  1 )  e.  ( 3 ... n )  <-> 
( 3  <_  (
( n  /  2
)  +  1 )  /\  ( ( n  /  2 )  +  1 )  <_  n
) ) )
158145, 154, 157mpbir2and 889 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  ( 3 ... n ) )
159 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  ( theta `  k )  =  ( theta `  ( (
n  /  2 )  +  1 ) ) )
160 oveq2 6048 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  (
2  x.  k )  =  ( 2  x.  ( ( n  / 
2 )  +  1 ) ) )
161160oveq1d 6055 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) )
162161oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  3 ) ) )
163159, 162breq12d 4185 . . . . . . . . . . . . . 14  |-  ( k  =  ( ( n  /  2 )  +  1 )  ->  (
( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <-> 
( theta `  ( (
n  /  2 )  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  3 ) ) ) )
164163rspcv 3008 . . . . . . . . . . . . 13  |-  ( ( ( n  /  2
)  +  1 )  e.  ( 3 ... n )  ->  ( A. k  e.  (
3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) ) ) )
165158, 164syl 16 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  ( ( n  /  2 )  +  1 ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  -  3 ) ) ) )
166133recnd 9070 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  /  2 )  e.  CC )
167166adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  /  2
)  e.  CC )
168 ax-1cn 9004 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
169 adddi 9035 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  CC  /\  ( n  /  2
)  e.  CC  /\  1  e.  CC )  ->  ( 2  x.  (
( n  /  2
)  +  1 ) )  =  ( ( 2  x.  ( n  /  2 ) )  +  ( 2  x.  1 ) ) )
170117, 168, 169mp3an13 1270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  /  2 )  e.  CC  ->  (
2  x.  ( ( n  /  2 )  +  1 ) )  =  ( ( 2  x.  ( n  / 
2 ) )  +  ( 2  x.  1 ) ) )
171167, 170syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
( n  /  2
)  +  1 ) )  =  ( ( 2  x.  ( n  /  2 ) )  +  ( 2  x.  1 ) ) )
172151adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  ->  n  e.  CC )
173 divcan2 9642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( n  /  2 ) )  =  n )
174117, 118, 173mp3an23 1271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  CC  ->  (
2  x.  ( n  /  2 ) )  =  n )
175172, 174syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
n  /  2 ) )  =  n )
176117mulid1i 9048 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  x.  1 )  =  2
177176a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  1 )  =  2 )
178175, 177oveq12d 6058 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( n  /  2
) )  +  ( 2  x.  1 ) )  =  ( n  +  2 ) )
179171, 178eqtrd 2436 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
( n  /  2
)  +  1 ) )  =  ( n  +  2 ) )
180179oveq1d 6055 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  3 )  =  ( ( n  +  2 )  -  3 ) )
181 2p1e3 10059 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  +  1 )  =  3
18294, 117, 168, 181subaddrii 9345 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  -  2 )  =  1
183182oveq2i 6051 . . . . . . . . . . . . . . . . . 18  |-  ( n  -  ( 3  -  2 ) )  =  ( n  -  1 )
184 subsub3 9289 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  CC  /\  3  e.  CC  /\  2  e.  CC )  ->  (
n  -  ( 3  -  2 ) )  =  ( ( n  +  2 )  - 
3 ) )
18594, 117, 184mp3an23 1271 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  CC  ->  (
n  -  ( 3  -  2 ) )  =  ( ( n  +  2 )  - 
3 ) )
186172, 185syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  -  (
3  -  2 ) )  =  ( ( n  +  2 )  -  3 ) )
187183, 186syl5reqr 2451 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  + 
2 )  -  3 )  =  ( n  -  1 ) )
188180, 187eqtrd 2436 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  3 )  =  ( n  -  1 ) )
189188oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  -  3 ) )  =  ( ( log `  2 )  x.  ( n  -  1 ) ) )
190189breq2d 4184 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) )  <->  ( theta `  ( ( n  / 
2 )  +  1 ) )  <  (
( log `  2
)  x.  ( n  -  1 ) ) ) )
191141zred 10331 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  RR )
192 chtcl 20845 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  /  2
)  +  1 )  e.  RR  ->  ( theta `  ( ( n  /  2 )  +  1 ) )  e.  RR )
193191, 192syl 16 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( (
n  /  2 )  +  1 ) )  e.  RR )
194127adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  ->  n  e.  RR )
195 peano2rem 9323 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
196194, 195syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  -  1 )  e.  RR )
197 remulcl 9031 . . . . . . . . . . . . . . . 16  |-  ( ( ( log `  2
)  e.  RR  /\  ( n  -  1
)  e.  RR )  ->  ( ( log `  2 )  x.  ( n  -  1 ) )  e.  RR )
198104, 196, 197sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( n  -  1 ) )  e.  RR )
199 remulcl 9031 . . . . . . . . . . . . . . . 16  |-  ( ( ( log `  2
)  e.  RR  /\  n  e.  RR )  ->  ( ( log `  2
)  x.  n )  e.  RR )
200104, 194, 199sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  n )  e.  RR )
201193, 198, 200ltadd1d 9575 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( n  - 
1 ) )  <->  ( ( theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( ( log `  2
)  x.  ( n  -  1 ) )  +  ( ( log `  2 )  x.  n ) ) ) )
202105a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( log `  2
)  e.  CC )
203196recnd 9070 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  -  1 )  e.  CC )
204202, 203, 172adddid 9068 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( ( n  -  1 )  +  n ) )  =  ( ( ( log `  2 )  x.  ( n  - 
1 ) )  +  ( ( log `  2
)  x.  n ) ) )
205 adddi 9035 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  n  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( n  +  1 ) )  =  ( ( 2  x.  n )  +  ( 2  x.  1 ) ) )
206117, 168, 205mp3an13 1270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  CC  ->  (
2  x.  ( n  +  1 ) )  =  ( ( 2  x.  n )  +  ( 2  x.  1 ) ) )
207172, 206syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
n  +  1 ) )  =  ( ( 2  x.  n )  +  ( 2  x.  1 ) ) )
208176oveq2i 6051 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  x.  n )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  n )  +  2 )
209207, 208syl6eq 2452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  (
n  +  1 ) )  =  ( ( 2  x.  n )  +  2 ) )
210209oveq1d 6055 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( n  +  1 ) )  -  3 )  =  ( ( ( 2  x.  n
)  +  2 )  -  3 ) )
211 zmulcl 10280 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  e.  ZZ )
212122, 123, 211sylancr 645 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  n )  e.  ZZ )
213212zcnd 10332 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  n )  e.  CC )
214213adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  n
)  e.  CC )
215 subsub3 9289 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2  x.  n
)  e.  CC  /\  3  e.  CC  /\  2  e.  CC )  ->  (
( 2  x.  n
)  -  ( 3  -  2 ) )  =  ( ( ( 2  x.  n )  +  2 )  - 
3 ) )
21694, 117, 215mp3an23 1271 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  x.  n )  e.  CC  ->  (
( 2  x.  n
)  -  ( 3  -  2 ) )  =  ( ( ( 2  x.  n )  +  2 )  - 
3 ) )
217214, 216syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  n )  -  (
3  -  2 ) )  =  ( ( ( 2  x.  n
)  +  2 )  -  3 ) )
218182oveq2i 6051 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  x.  n )  -  ( 3  -  2 ) )  =  ( ( 2  x.  n )  -  1 )
2191722timesd 10166 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( 2  x.  n
)  =  ( n  +  n ) )
220219oveq1d 6055 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  n )  -  1 )  =  ( ( n  +  n )  -  1 ) )
221168a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
1  e.  CC )
222172, 172, 221addsubd 9388 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  +  n )  -  1 )  =  ( ( n  -  1 )  +  n ) )
223220, 222eqtrd 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  n )  -  1 )  =  ( ( n  -  1 )  +  n ) )
224218, 223syl5eq 2448 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  n )  -  (
3  -  2 ) )  =  ( ( n  -  1 )  +  n ) )
225210, 217, 2243eqtr2rd 2443 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  - 
1 )  +  n
)  =  ( ( 2  x.  ( n  +  1 ) )  -  3 ) )
226225oveq2d 6056 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( ( n  -  1 )  +  n ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )
227204, 226eqtr3d 2438 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( log `  2 )  x.  ( n  -  1 ) )  +  ( ( log `  2
)  x.  n ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) )
228227breq2d 4184 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( ( log `  2
)  x.  ( n  -  1 ) )  +  ( ( log `  2 )  x.  n ) )  <->  ( ( theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) ) )
229190, 201, 2283bitrd 271 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) )  <->  ( ( theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) ) )
230 elfzuz 11011 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  /  2
)  +  1 )  e.  ( 3 ... n )  ->  (
( n  /  2
)  +  1 )  e.  ( ZZ>= `  3
) )
231158, 230syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  ( ZZ>= ` 
3 ) )
232 nnuz 10477 . . . . . . . . . . . . . . . . . 18  |-  NN  =  ( ZZ>= `  1 )
233232uztrn2 10459 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  e.  NN  /\  ( ( n  / 
2 )  +  1 )  e.  ( ZZ>= ` 
3 ) )  -> 
( ( n  / 
2 )  +  1 )  e.  NN )
23467, 231, 233sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  / 
2 )  +  1 )  e.  NN )
235 chtublem 20948 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  /  2
)  +  1 )  e.  NN  ->  ( theta `  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
1 ) )  <_ 
( ( theta `  (
( n  /  2
)  +  1 ) )  +  ( ( log `  4 )  x.  ( ( ( n  /  2 )  +  1 )  - 
1 ) ) ) )
236234, 235syl 16 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( (
2  x.  ( ( n  /  2 )  +  1 ) )  -  1 ) )  <_  ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  4
)  x.  ( ( ( n  /  2
)  +  1 )  -  1 ) ) ) )
237179oveq1d 6055 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  1 )  =  ( ( n  +  2 )  -  1 ) )
238 addsubass 9271 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( n  +  2 )  -  1 )  =  ( n  +  ( 2  -  1 ) ) )
239117, 168, 238mp3an23 1271 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  CC  ->  (
( n  +  2 )  -  1 )  =  ( n  +  ( 2  -  1 ) ) )
240172, 239syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  + 
2 )  -  1 )  =  ( n  +  ( 2  -  1 ) ) )
241 2m1e1 10051 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  -  1 )  =  1
242241oveq2i 6051 . . . . . . . . . . . . . . . . . 18  |-  ( n  +  ( 2  -  1 ) )  =  ( n  +  1 )
243240, 242syl6eq 2452 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( n  + 
2 )  -  1 )  =  ( n  +  1 ) )
244237, 243eqtrd 2436 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( ( n  / 
2 )  +  1 ) )  -  1 )  =  ( n  +  1 ) )
245244fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( (
2  x.  ( ( n  /  2 )  +  1 ) )  -  1 ) )  =  ( theta `  (
n  +  1 ) ) )
246 pncan 9267 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  /  2
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( n  /  2 )  +  1 )  -  1 )  =  ( n  /  2 ) )
247167, 168, 246sylancl 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( n  /  2 )  +  1 )  -  1 )  =  ( n  /  2 ) )
248247oveq2d 6056 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  4
)  x.  ( ( ( n  /  2
)  +  1 )  -  1 ) )  =  ( ( log `  4 )  x.  ( n  /  2
) ) )
249 relogexp 20443 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( 2 ^ 2 ) )  =  ( 2  x.  ( log `  2 ) ) )
250102, 122, 249mp2an 654 . . . . . . . . . . . . . . . . . . . 20  |-  ( log `  ( 2 ^ 2 ) )  =  ( 2  x.  ( log `  2 ) )
251 sq2 11432 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2 ^ 2 )  =  4
252251fveq2i 5690 . . . . . . . . . . . . . . . . . . . 20  |-  ( log `  ( 2 ^ 2 ) )  =  ( log `  4 )
253117, 105mulcomi 9052 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  x.  ( log `  2
) )  =  ( ( log `  2
)  x.  2 )
254250, 252, 2533eqtr3i 2432 . . . . . . . . . . . . . . . . . . 19  |-  ( log `  4 )  =  ( ( log `  2
)  x.  2 )
255254oveq1i 6050 . . . . . . . . . . . . . . . . . 18  |-  ( ( log `  4 )  x.  ( n  / 
2 ) )  =  ( ( ( log `  2 )  x.  2 )  x.  (
n  /  2 ) )
256117a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
2  e.  CC )
257202, 256, 167mulassd 9067 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( log `  2 )  x.  2 )  x.  (
n  /  2 ) )  =  ( ( log `  2 )  x.  ( 2  x.  ( n  /  2
) ) ) )
258255, 257syl5eq 2448 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  4
)  x.  ( n  /  2 ) )  =  ( ( log `  2 )  x.  ( 2  x.  (
n  /  2 ) ) ) )
259175oveq2d 6056 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( 2  x.  ( n  / 
2 ) ) )  =  ( ( log `  2 )  x.  n ) )
260248, 258, 2593eqtrd 2440 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  4
)  x.  ( ( ( n  /  2
)  +  1 )  -  1 ) )  =  ( ( log `  2 )  x.  n ) )
261260oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  +  ( ( log `  4 )  x.  ( ( ( n  /  2 )  +  1 )  - 
1 ) ) )  =  ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) ) )
262236, 245, 2613brtr3d 4201 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( n  +  1 ) )  <_  ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) ) )
263 peano2uz 10486 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  +  1 )  e.  ( ZZ>= `  3 )
)
264 eluzelz 10452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  +  1 )  e.  ( ZZ>= `  3
)  ->  ( n  +  1 )  e.  ZZ )
265263, 264syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  +  1 )  e.  ZZ )
266265zred 10331 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  +  1 )  e.  RR )
267266adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( n  +  1 )  e.  RR )
268 chtcl 20845 . . . . . . . . . . . . . . . 16  |-  ( ( n  +  1 )  e.  RR  ->  ( theta `  ( n  + 
1 ) )  e.  RR )
269267, 268syl 16 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( theta `  ( n  +  1 ) )  e.  RR )
270193, 200readdcld 9071 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  +  ( ( log `  2 )  x.  n ) )  e.  RR )
271 zmulcl 10280 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  ZZ  /\  ( n  +  1
)  e.  ZZ )  ->  ( 2  x.  ( n  +  1 ) )  e.  ZZ )
272122, 265, 271sylancr 645 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  ( n  + 
1 ) )  e.  ZZ )
273272zred 10331 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  ( n  + 
1 ) )  e.  RR )
274 resubcl 9321 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2  x.  (
n  +  1 ) )  e.  RR  /\  3  e.  RR )  ->  ( ( 2  x.  ( n  +  1 ) )  -  3 )  e.  RR )
275273, 31, 274sylancl 644 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
2  x.  ( n  +  1 ) )  -  3 )  e.  RR )
276275adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( 2  x.  ( n  +  1 ) )  -  3 )  e.  RR )
277 remulcl 9031 . . . . . . . . . . . . . . . 16  |-  ( ( ( log `  2
)  e.  RR  /\  ( ( 2  x.  ( n  +  1 ) )  -  3 )  e.  RR )  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) )  e.  RR )
278104, 276, 277sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) )  e.  RR )
279 lelttr 9121 . . . . . . . . . . . . . . 15  |-  ( ( ( theta `  ( n  +  1 ) )  e.  RR  /\  (
( theta `  ( (
n  /  2 )  +  1 ) )  +  ( ( log `  2 )  x.  n ) )  e.  RR  /\  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )  e.  RR )  ->  (
( ( theta `  (
n  +  1 ) )  <_  ( ( theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  /\  ( (
theta `  ( ( n  /  2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) )  ->  ( theta `  (
n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) ) )
280269, 270, 278, 279syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( theta `  ( n  +  1 ) )  <_  (
( theta `  ( (
n  /  2 )  +  1 ) )  +  ( ( log `  2 )  x.  n ) )  /\  ( ( theta `  (
( n  /  2
)  +  1 ) )  +  ( ( log `  2 )  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )  -> 
( theta `  ( n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
281262, 280mpand 657 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( ( theta `  ( ( n  / 
2 )  +  1 ) )  +  ( ( log `  2
)  x.  n ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )  -> 
( theta `  ( n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
282229, 281sylbid 207 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( ( theta `  (
( n  /  2
)  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( ( n  /  2 )  +  1 ) )  - 
3 ) )  -> 
( theta `  ( n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
283165, 282syld 42 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  /  2 )  e.  ZZ )  -> 
( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  ( n  + 
1 ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
284 eluzfz2 11021 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  e.  ( 3 ... n
) )
285 fveq2 5687 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  ( theta `  k )  =  ( theta `  n )
)
286 oveq2 6048 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
287286oveq1d 6055 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  n )  - 
3 ) )
288287oveq2d 6056 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) ) )
289285, 288breq12d 4185 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <-> 
( theta `  n )  <  ( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) ) ) )
290289rspcv 3008 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 3 ... n )  ->  ( A. k  e.  (
3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) ) ) )
291284, 290syl 16 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) ) ) )
292291adantr 452 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  n )  < 
( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) ) ) )
293212zred 10331 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  n )  e.  RR )
29431a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  3  e.  RR )
295127ltp1d 9897 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  n  <  ( n  +  1 ) )
29625a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
297 ltmul2 9817 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  RR  /\  ( n  +  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( n  <  ( n  +  1 )  <->  ( 2  x.  n )  <  (
2  x.  ( n  +  1 ) ) ) )
298127, 266, 296, 297syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( n  <  ( n  +  1 )  <->  ( 2  x.  n )  <  (
2  x.  ( n  +  1 ) ) ) )
299295, 298mpbid 202 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2  x.  n )  < 
( 2  x.  (
n  +  1 ) ) )
300293, 273, 294, 299ltsub1dd 9594 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
2  x.  n )  -  3 )  < 
( ( 2  x.  ( n  +  1 ) )  -  3 ) )
301 resubcl 9321 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2  x.  n
)  e.  RR  /\  3  e.  RR )  ->  ( ( 2  x.  n )  -  3 )  e.  RR )
302293, 31, 301sylancl 644 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
2  x.  n )  -  3 )  e.  RR )
3037a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( log `  2 )  e.  RR  /\  0  < 
( log `  2
) ) )
304 ltmul2 9817 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2  x.  n )  -  3 )  e.  RR  /\  ( ( 2  x.  ( n  +  1 ) )  -  3 )  e.  RR  /\  ( ( log `  2
)  e.  RR  /\  0  <  ( log `  2
) ) )  -> 
( ( ( 2  x.  n )  - 
3 )  <  (
( 2  x.  (
n  +  1 ) )  -  3 )  <-> 
( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
305302, 275, 303, 304syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
( 2  x.  n
)  -  3 )  <  ( ( 2  x.  ( n  + 
1 ) )  - 
3 )  <->  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
306300, 305mpbid 202 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )
307 chtcl 20845 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR  ->  ( theta `  n )  e.  RR )
308127, 307syl 16 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( theta `  n )  e.  RR )
309 remulcl 9031 . . . . . . . . . . . . . . . . 17  |-  ( ( ( log `  2
)  e.  RR  /\  ( ( 2  x.  n )  -  3 )  e.  RR )  ->  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  e.  RR )
310104, 302, 309sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  e.  RR )
311104, 275, 277sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) )  e.  RR )
312 lttr 9108 . . . . . . . . . . . . . . . 16  |-  ( ( ( theta `  n )  e.  RR  /\  ( ( log `  2 )  x.  ( ( 2  x.  n )  - 
3 ) )  e.  RR  /\  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )  e.  RR )  ->  (
( ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  /\  (
( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )  -> 
( theta `  n )  <  ( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
313308, 310, 311, 312syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
( theta `  n )  <  ( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) )  /\  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )  ->  ( theta `  n )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
314306, 313mpan2d 656 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( theta `  n )  < 
( ( log `  2
)  x.  ( ( 2  x.  n )  -  3 ) )  ->  ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
315314adantr 452 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  ->  ( theta `  n )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
316123adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  ->  n  e.  ZZ )
317 dvdsval2 12810 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
n  +  1 )  e.  ZZ )  -> 
( 2  ||  (
n  +  1 )  <-> 
( ( n  + 
1 )  /  2
)  e.  ZZ ) )
318122, 118, 317mp3an12 1269 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  +  1 )  e.  ZZ  ->  (
2  ||  ( n  +  1 )  <->  ( (
n  +  1 )  /  2 )  e.  ZZ ) )
319265, 318syl 16 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2 
||  ( n  + 
1 )  <->  ( (
n  +  1 )  /  2 )  e.  ZZ ) )
320 2lt3 10099 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  <  3
3212, 31ltnlei 9150 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2  <  3  <->  -.  3  <_  2 )
322320, 321mpbi 200 . . . . . . . . . . . . . . . . . . . . . . 23  |-  -.  3  <_  2
323 breq2 4176 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  =  ( n  + 
1 )  ->  (
3  <_  2  <->  3  <_  ( n  +  1 ) ) )
324322, 323mtbii 294 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  =  ( n  + 
1 )  ->  -.  3  <_  ( n  + 
1 ) )
325 eluzle 10454 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  +  1 )  e.  ( ZZ>= `  3
)  ->  3  <_  ( n  +  1 ) )
326263, 325syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ZZ>= `  3
)  ->  3  <_  ( n  +  1 ) )
327324, 326nsyl3 113 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ZZ>= `  3
)  ->  -.  2  =  ( n  + 
1 ) )
328327adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  +  1 )  e.  Prime )  ->  -.  2  =  ( n  +  1 ) )
329 uzid 10456 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
330122, 329ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  ( ZZ>= `  2 )
331 simpr 448 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  +  1 )  e.  Prime )  ->  (
n  +  1 )  e.  Prime )
332 dvdsprm 13054 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  (
n  +  1 )  e.  Prime )  ->  (
2  ||  ( n  +  1 )  <->  2  =  ( n  +  1
) ) )
333330, 331, 332sylancr 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  +  1 )  e.  Prime )  ->  (
2  ||  ( n  +  1 )  <->  2  =  ( n  +  1
) ) )
334328, 333mtbird 293 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
n  +  1 )  e.  Prime )  ->  -.  2  ||  ( n  + 
1 ) )
335334ex 424 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  +  1 )  e.  Prime  ->  -.  2  ||  ( n  +  1 ) ) )
336335con2d 109 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 2 
||  ( n  + 
1 )  ->  -.  ( n  +  1
)  e.  Prime )
)
337319, 336sylbird 227 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
( n  +  1 )  /  2 )  e.  ZZ  ->  -.  ( n  +  1
)  e.  Prime )
)
338337imp 419 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  ->  -.  ( n  +  1 )  e.  Prime )
339 chtnprm 20890 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ZZ  /\  -.  ( n  +  1 )  e.  Prime )  ->  ( theta `  ( n  +  1 ) )  =  ( theta `  n
) )
340316, 338, 339syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( theta `  ( n  +  1 ) )  =  ( theta `  n
) )
341340breq1d 4182 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( ( theta `  (
n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )  <->  ( theta `  n )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
342315, 341sylibrd 226 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( ( theta `  n
)  <  ( ( log `  2 )  x.  ( ( 2  x.  n )  -  3 ) )  ->  ( theta `  ( n  + 
1 ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
343292, 342syld 42 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= ` 
3 )  /\  (
( n  +  1 )  /  2 )  e.  ZZ )  -> 
( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  ( n  + 
1 ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
344 zeo 10311 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( n  /  2
)  e.  ZZ  \/  ( ( n  + 
1 )  /  2
)  e.  ZZ ) )
345123, 344syl 16 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( (
n  /  2 )  e.  ZZ  \/  (
( n  +  1 )  /  2 )  e.  ZZ ) )
346283, 343, 345mpjaodan 762 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  (
n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) ) ) )
347 ovex 6065 . . . . . . . . . . 11  |-  ( n  +  1 )  e. 
_V
348 fveq2 5687 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( theta `  k )  =  ( theta `  ( n  +  1 ) ) )
349 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
2  x.  k )  =  ( 2  x.  ( n  +  1 ) ) )
350349oveq1d 6055 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  ( n  + 
1 ) )  - 
3 ) )
351350oveq2d 6056 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )
352348, 351breq12d 4185 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <-> 
( theta `  ( n  +  1 ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) ) )
353347, 352ralsn 3809 . . . . . . . . . 10  |-  ( A. k  e.  { (
n  +  1 ) }  ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  <->  ( theta `  ( n  +  1 ) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( n  +  1 ) )  -  3 ) ) )
354346, 353syl6ibr 219 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  A. k  e.  {
( n  +  1 ) }  ( theta `  k )  <  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
355354ancld 537 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( A. k  e.  ( 3 ... n
) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) )  /\  A. k  e.  { (
n  +  1 ) }  ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) ) ) ) )
356 ralun 3489 . . . . . . . . 9  |-  ( ( A. k  e.  ( 3 ... n ) ( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  /\  A. k  e. 
{ ( n  + 
1 ) }  ( theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )  ->  A. k  e.  ( ( 3 ... n )  u.  {
( n  +  1 ) } ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )
357 fzsuc 11052 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( 3 ... ( n  + 
1 ) )  =  ( ( 3 ... n )  u.  {
( n  +  1 ) } ) )
358357raleqdv 2870 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... ( n  + 
1 ) ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <->  A. k  e.  (
( 3 ... n
)  u.  { ( n  +  1 ) } ) ( theta `  k )  <  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
359356, 358syl5ibr 213 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( ( A. k  e.  (
3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  /\  A. k  e. 
{ ( n  + 
1 ) }  ( theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )  ->  A. k  e.  ( 3 ... (
n  +  1 ) ) ( theta `  k
)  <  ( ( log `  2 )  x.  ( ( 2  x.  k )  -  3 ) ) ) )
360355, 359syld 42 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  3
)  ->  ( A. k  e.  ( 3 ... n ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  A. k  e.  ( 3 ... ( n  +  1 ) ) ( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) ) )
36168, 70, 72, 74, 76, 115, 360uzind4i 10494 . . . . . 6  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  ->  A. k  e.  ( 3 ... ( |_ `  N ) ) ( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) ) )
362 fveq2 5687 . . . . . . . 8  |-  ( k  =  ( |_ `  N )  ->  ( theta `  k )  =  ( theta `  ( |_ `  N ) ) )
363 oveq2 6048 . . . . . . . . . 10  |-  ( k  =  ( |_ `  N )  ->  (
2  x.  k )  =  ( 2  x.  ( |_ `  N
) ) )
364363oveq1d 6055 . . . . . . . . 9  |-  ( k  =  ( |_ `  N )  ->  (
( 2  x.  k
)  -  3 )  =  ( ( 2  x.  ( |_ `  N ) )  - 
3 ) )
365364oveq2d 6056 . . . . . . . 8  |-  ( k  =  ( |_ `  N )  ->  (
( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  =  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) ) )
366362, 365breq12d 4185 . . . . . . 7  |-  ( k  =  ( |_ `  N )  ->  (
( theta `  k )  <  ( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  <-> 
( theta `  ( |_ `  N ) )  < 
( ( log `  2
)  x.  ( ( 2  x.  ( |_
`  N ) )  -  3 ) ) ) )
367366rspcv 3008 . . . . . 6  |-  ( ( |_ `  N )  e.  ( 3 ... ( |_ `  N
) )  ->  ( A. k  e.  (
3 ... ( |_ `  N ) ) (
theta `  k )  < 
( ( log `  2
)  x.  ( ( 2  x.  k )  -  3 ) )  ->  ( theta `  ( |_ `  N ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) ) ) )
36866, 361, 367sylc 58 . . . . 5  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  ->  ( theta `  ( |_ `  N
) )  <  (
( log `  2
)  x.  ( ( 2  x.  ( |_
`  N ) )  -  3 ) ) )
36965, 368syl 16 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  ( |_ `  N ) )  <  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) ) )
37061, 369eqbrtrrd 4194 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  N
)  <  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) ) )
37136adantr 452 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( 2  x.  N )  e.  RR )
37231a1i 11 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  3  e.  RR )
373 flle 11163 . . . . . . 7  |-  ( N  e.  RR  ->  ( |_ `  N )  <_  N )
374373ad2antrr 707 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( |_ `  N )  <_  N
)
37522adantr 452 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  N  e.  RR )
37625a1i 11 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
377 lemul2 9819 . . . . . . 7  |-  ( ( ( |_ `  N
)  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( |_
`  N )  <_  N 
<->  ( 2  x.  ( |_ `  N ) )  <_  ( 2  x.  N ) ) )
37851, 375, 376, 377syl3anc 1184 . . . . . 6  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( |_
`  N )  <_  N 
<->  ( 2  x.  ( |_ `  N ) )  <_  ( 2  x.  N ) ) )
379374, 378mpbid 202 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( 2  x.  ( |_ `  N
) )  <_  (
2  x.  N ) )
38053, 371, 372, 379lesub1dd 9598 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( 2  x.  ( |_ `  N ) )  - 
3 )  <_  (
( 2  x.  N
)  -  3 ) )
3817a1i 11 . . . . 5  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( log `  2 )  e.  RR  /\  0  < 
( log `  2
) ) )
382 lemul2 9819 . . . . 5  |-  ( ( ( ( 2  x.  ( |_ `  N
) )  -  3 )  e.  RR  /\  ( ( 2  x.  N )  -  3 )  e.  RR  /\  ( ( log `  2
)  e.  RR  /\  0  <  ( log `  2
) ) )  -> 
( ( ( 2  x.  ( |_ `  N ) )  - 
3 )  <_  (
( 2  x.  N
)  -  3 )  <-> 
( ( log `  2
)  x.  ( ( 2  x.  ( |_
`  N ) )  -  3 ) )  <_  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) ) ) )
38355, 58, 381, 382syl3anc 1184 . . . 4  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( ( 2  x.  ( |_
`  N ) )  -  3 )  <_ 
( ( 2  x.  N )  -  3 )  <->  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) )  <_  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) ) )
384380, 383mpbid 202 . . 3  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( ( log `  2 )  x.  ( ( 2  x.  ( |_ `  N
) )  -  3 ) )  <_  (
( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )
38549, 57, 60, 370, 384ltletrd 9186 . 2  |-  ( ( ( N  e.  RR  /\  2  <  N )  /\  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) )  ->  ( theta `  N
)  <  ( ( log `  2 )  x.  ( ( 2  x.  N )  -  3 ) ) )
386122a1i 11 . . . 4  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
2  e.  ZZ )
387 flcl 11159 . . . . 5  |-  ( N  e.  RR  ->  ( |_ `  N )  e.  ZZ )
388387adantr 452 . . . 4  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( |_ `  N
)  e.  ZZ )
389 ltle 9119 . . . . . . 7  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  <  N  ->  2  <_  N )
)
3902, 389mpan 652 . . . . . 6  |-  ( N  e.  RR  ->  (
2  <  N  ->  2  <_  N ) )
391 flge 11169 . . . . . . 7  |-  ( ( N  e.  RR  /\  2  e.  ZZ )  ->  ( 2  <_  N  <->  2  <_  ( |_ `  N ) ) )
392122, 391mpan2 653 . . . . . 6  |-  ( N  e.  RR  ->  (
2  <_  N  <->  2  <_  ( |_ `  N ) ) )
393390, 392sylibd 206 . . . . 5  |-  ( N  e.  RR  ->  (
2  <  N  ->  2  <_  ( |_ `  N ) ) )
394393imp 419 . . . 4  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
2  <_  ( |_ `  N ) )
395 eluz2 10450 . . . 4  |-  ( ( |_ `  N )  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  ( |_
`  N )  e.  ZZ  /\  2  <_ 
( |_ `  N
) ) )
396386, 388, 394, 395syl3anbrc 1138 . . 3  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( |_ `  N
)  e.  ( ZZ>= ` 
2 ) )
397 uzp1 10475 . . 3  |-  ( ( |_ `  N )  e.  ( ZZ>= `  2
)  ->  ( ( |_ `  N )  =  2  \/  ( |_
`  N )  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )
398396, 397syl 16 . 2  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( ( |_ `  N )  =  2  \/  ( |_ `  N )  e.  (
ZZ>= `  ( 2  +  1 ) ) ) )
39947, 385, 398mpjaodan 762 1  |-  ( ( N  e.  RR  /\  2  <  N )  -> 
( theta `  N )  <  ( ( log `  2
)  x.  ( ( 2  x.  N )  -  3 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666    u. cun 3278   {csn 3774   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   4c4 10007   6c6 10009   8c8 10011   ZZcz 10238   ZZ>=cuz 10444   RR+crp 10568   ...cfz 10999   |_cfl 11156   ^cexp 11337    || cdivides 12807   Primecprime 13034   logclog 20405   thetaccht 20826
This theorem is referenced by:  bposlem6  21026  chto1ub  21123
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cht 20832
  Copyright terms: Public domain W3C validator