MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtprm Unicode version

Theorem chtprm 20889
Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtprm  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( theta `  ( A  +  1 ) )  =  ( ( theta `  A )  +  ( log `  ( A  +  1 ) ) ) )

Proof of Theorem chtprm
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 peano2z 10274 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  +  1 )  e.  ZZ )
21adantr 452 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  ZZ )
3 zre 10242 . . . . 5  |-  ( ( A  +  1 )  e.  ZZ  ->  ( A  +  1 )  e.  RR )
42, 3syl 16 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  RR )
5 chtval 20846 . . . 4  |-  ( ( A  +  1 )  e.  RR  ->  ( theta `  ( A  + 
1 ) )  = 
sum_ p  e.  (
( 0 [,] ( A  +  1 ) )  i^i  Prime )
( log `  p
) )
64, 5syl 16 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( theta `  ( A  +  1 ) )  =  sum_ p  e.  ( ( 0 [,] ( A  +  1 ) )  i^i  Prime )
( log `  p
) )
7 ppisval 20839 . . . . . 6  |-  ( ( A  +  1 )  e.  RR  ->  (
( 0 [,] ( A  +  1 ) )  i^i  Prime )  =  ( ( 2 ... ( |_ `  ( A  +  1
) ) )  i^i 
Prime ) )
84, 7syl 16 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 0 [,] ( A  +  1 ) )  i^i  Prime )  =  ( ( 2 ... ( |_ `  ( A  +  1
) ) )  i^i 
Prime ) )
9 flid 11171 . . . . . . . 8  |-  ( ( A  +  1 )  e.  ZZ  ->  ( |_ `  ( A  + 
1 ) )  =  ( A  +  1 ) )
102, 9syl 16 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( |_ `  ( A  +  1 ) )  =  ( A  +  1 ) )
1110oveq2d 6056 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( 2 ... ( |_ `  ( A  + 
1 ) ) )  =  ( 2 ... ( A  +  1 ) ) )
1211ineq1d 3501 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( |_ `  ( A  +  1 ) ) )  i^i  Prime )  =  ( ( 2 ... ( A  + 
1 ) )  i^i 
Prime ) )
138, 12eqtrd 2436 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 0 [,] ( A  +  1 ) )  i^i  Prime )  =  ( ( 2 ... ( A  + 
1 ) )  i^i 
Prime ) )
1413sumeq1d 12450 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  -> 
sum_ p  e.  (
( 0 [,] ( A  +  1 ) )  i^i  Prime )
( log `  p
)  =  sum_ p  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) ( log `  p
) )
156, 14eqtrd 2436 . 2  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( theta `  ( A  +  1 ) )  =  sum_ p  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )
( log `  p
) )
16 zre 10242 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  RR )
1716adantr 452 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  e.  RR )
1817ltp1d 9897 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  <  ( A  +  1 ) )
1917, 4ltnled 9176 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  <  ( A  +  1 )  <->  -.  ( A  +  1 )  <_  A )
)
2018, 19mpbid 202 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  -.  ( A  + 
1 )  <_  A
)
21 inss1 3521 . . . . . . 7  |-  ( ( 2 ... A )  i^i  Prime )  C_  (
2 ... A )
2221sseli 3304 . . . . . 6  |-  ( ( A  +  1 )  e.  ( ( 2 ... A )  i^i 
Prime )  ->  ( A  +  1 )  e.  ( 2 ... A
) )
23 elfzle2 11017 . . . . . 6  |-  ( ( A  +  1 )  e.  ( 2 ... A )  ->  ( A  +  1 )  <_  A )
2422, 23syl 16 . . . . 5  |-  ( ( A  +  1 )  e.  ( ( 2 ... A )  i^i 
Prime )  ->  ( A  +  1 )  <_  A )
2520, 24nsyl 115 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  -.  ( A  + 
1 )  e.  ( ( 2 ... A
)  i^i  Prime ) )
26 disjsn 3828 . . . 4  |-  ( ( ( ( 2 ... A )  i^i  Prime )  i^i  { ( A  +  1 ) } )  =  (/)  <->  -.  ( A  +  1 )  e.  ( ( 2 ... A )  i^i 
Prime ) )
2725, 26sylibr 204 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( ( 2 ... A )  i^i 
Prime )  i^i  { ( A  +  1 ) } )  =  (/) )
28 2z 10268 . . . . . . 7  |-  2  e.  ZZ
29 zcn 10243 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  A  e.  CC )
3029adantr 452 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  e.  CC )
31 ax-1cn 9004 . . . . . . . . . 10  |-  1  e.  CC
32 pncan 9267 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
3330, 31, 32sylancl 644 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( A  + 
1 )  -  1 )  =  A )
34 prmuz2 13052 . . . . . . . . . . 11  |-  ( ( A  +  1 )  e.  Prime  ->  ( A  +  1 )  e.  ( ZZ>= `  2 )
)
3534adantl 453 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  ( ZZ>= ` 
2 ) )
36 uz2m1nn 10506 . . . . . . . . . 10  |-  ( ( A  +  1 )  e.  ( ZZ>= `  2
)  ->  ( ( A  +  1 )  -  1 )  e.  NN )
3735, 36syl 16 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( A  + 
1 )  -  1 )  e.  NN )
3833, 37eqeltrrd 2479 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  e.  NN )
39 nnuz 10477 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
40 2m1e1 10051 . . . . . . . . . 10  |-  ( 2  -  1 )  =  1
4140fveq2i 5690 . . . . . . . . 9  |-  ( ZZ>= `  ( 2  -  1 ) )  =  (
ZZ>= `  1 )
4239, 41eqtr4i 2427 . . . . . . . 8  |-  NN  =  ( ZZ>= `  ( 2  -  1 ) )
4338, 42syl6eleq 2494 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )
44 fzsuc2 11060 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  A  e.  ( ZZ>= `  ( 2  -  1 ) ) )  -> 
( 2 ... ( A  +  1 ) )  =  ( ( 2 ... A )  u.  { ( A  +  1 ) } ) )
4528, 43, 44sylancr 645 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( 2 ... ( A  +  1 ) )  =  ( ( 2 ... A )  u.  { ( A  +  1 ) } ) )
4645ineq1d 3501 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( ( 2 ... A )  u.  { ( A  +  1 ) } )  i^i  Prime )
)
47 indir 3549 . . . . 5  |-  ( ( ( 2 ... A
)  u.  { ( A  +  1 ) } )  i^i  Prime )  =  ( ( ( 2 ... A )  i^i  Prime )  u.  ( { ( A  + 
1 ) }  i^i  Prime
) )
4846, 47syl6eq 2452 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( ( 2 ... A )  i^i  Prime )  u.  ( { ( A  + 
1 ) }  i^i  Prime
) ) )
49 simpr 448 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  Prime )
5049snssd 3903 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  { ( A  + 
1 ) }  C_  Prime )
51 df-ss 3294 . . . . . 6  |-  ( { ( A  +  1 ) }  C_  Prime  <->  ( { ( A  + 
1 ) }  i^i  Prime
)  =  { ( A  +  1 ) } )
5250, 51sylib 189 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( { ( A  +  1 ) }  i^i  Prime )  =  {
( A  +  1 ) } )
5352uneq2d 3461 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( ( 2 ... A )  i^i 
Prime )  u.  ( { ( A  + 
1 ) }  i^i  Prime
) )  =  ( ( ( 2 ... A )  i^i  Prime )  u.  { ( A  +  1 ) } ) )
5448, 53eqtrd 2436 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  =  ( ( ( 2 ... A )  i^i  Prime )  u.  {
( A  +  1 ) } ) )
55 fzfid 11267 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( 2 ... ( A  +  1 ) )  e.  Fin )
56 inss1 3521 . . . 4  |-  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  C_  (
2 ... ( A  + 
1 ) )
57 ssfi 7288 . . . 4  |-  ( ( ( 2 ... ( A  +  1 ) )  e.  Fin  /\  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) 
C_  ( 2 ... ( A  +  1 ) ) )  -> 
( ( 2 ... ( A  +  1 ) )  i^i  Prime )  e.  Fin )
5855, 56, 57sylancl 644 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  e.  Fin )
59 inss2 3522 . . . . . . . 8  |-  ( ( 2 ... ( A  +  1 ) )  i^i  Prime )  C_  Prime
60 simpr 448 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  ( A  +  1 )  e.  Prime )  /\  p  e.  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  ->  p  e.  ( ( 2 ... ( A  +  1 ) )  i^i  Prime ) )
6159, 60sseldi 3306 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  ( A  +  1 )  e.  Prime )  /\  p  e.  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  ->  p  e.  Prime )
62 prmnn 13037 . . . . . . 7  |-  ( p  e.  Prime  ->  p  e.  NN )
6361, 62syl 16 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  ( A  +  1 )  e.  Prime )  /\  p  e.  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  ->  p  e.  NN )
6463nnrpd 10603 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  ( A  +  1 )  e.  Prime )  /\  p  e.  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  ->  p  e.  RR+ )
6564relogcld 20471 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( A  +  1 )  e.  Prime )  /\  p  e.  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  ->  ( log `  p )  e.  RR )
6665recnd 9070 . . 3  |-  ( ( ( A  e.  ZZ  /\  ( A  +  1 )  e.  Prime )  /\  p  e.  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
)  ->  ( log `  p )  e.  CC )
6727, 54, 58, 66fsumsplit 12488 . 2  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  -> 
sum_ p  e.  (
( 2 ... ( A  +  1 ) )  i^i  Prime )
( log `  p
)  =  ( sum_ p  e.  ( ( 2 ... A )  i^i 
Prime ) ( log `  p
)  +  sum_ p  e.  { ( A  + 
1 ) }  ( log `  p ) ) )
68 chtval 20846 . . . . 5  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
6917, 68syl 16 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( theta `  A )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
70 ppisval 20839 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 2 ... ( |_ `  A
) )  i^i  Prime ) )
7117, 70syl 16 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 0 [,] A )  i^i  Prime )  =  ( ( 2 ... ( |_ `  A ) )  i^i 
Prime ) )
72 flid 11171 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
7372adantr 452 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( |_ `  A
)  =  A )
7473oveq2d 6056 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( 2 ... ( |_ `  A ) )  =  ( 2 ... A ) )
7574ineq1d 3501 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 2 ... ( |_ `  A
) )  i^i  Prime )  =  ( ( 2 ... A )  i^i 
Prime ) )
7671, 75eqtrd 2436 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( ( 0 [,] A )  i^i  Prime )  =  ( ( 2 ... A )  i^i 
Prime ) )
7776sumeq1d 12450 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  -> 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( log `  p )  =  sum_ p  e.  ( ( 2 ... A
)  i^i  Prime ) ( log `  p ) )
7869, 77eqtr2d 2437 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  -> 
sum_ p  e.  (
( 2 ... A
)  i^i  Prime ) ( log `  p )  =  ( theta `  A
) )
79 prmnn 13037 . . . . 5  |-  ( ( A  +  1 )  e.  Prime  ->  ( A  +  1 )  e.  NN )
8079adantl 453 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  NN )
8180nnrpd 10603 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( A  +  1 )  e.  RR+ )
8281relogcld 20471 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( log `  ( A  +  1 ) )  e.  RR )
8382recnd 9070 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( log `  ( A  +  1 ) )  e.  CC )
84 fveq2 5687 . . . . 5  |-  ( p  =  ( A  + 
1 )  ->  ( log `  p )  =  ( log `  ( A  +  1 ) ) )
8584sumsn 12489 . . . 4  |-  ( ( ( A  +  1 )  e.  NN  /\  ( log `  ( A  +  1 ) )  e.  CC )  ->  sum_ p  e.  { ( A  +  1 ) }  ( log `  p
)  =  ( log `  ( A  +  1 ) ) )
8680, 83, 85syl2anc 643 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  -> 
sum_ p  e.  { ( A  +  1 ) }  ( log `  p
)  =  ( log `  ( A  +  1 ) ) )
8778, 86oveq12d 6058 . 2  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( sum_ p  e.  ( ( 2 ... A
)  i^i  Prime ) ( log `  p )  +  sum_ p  e.  {
( A  +  1 ) }  ( log `  p ) )  =  ( ( theta `  A
)  +  ( log `  ( A  +  1 ) ) ) )
8815, 67, 873eqtrd 2440 1  |-  ( ( A  e.  ZZ  /\  ( A  +  1
)  e.  Prime )  ->  ( theta `  ( A  +  1 ) )  =  ( ( theta `  A )  +  ( log `  ( A  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    < clt 9076    <_ cle 9077    - cmin 9247   NNcn 9956   2c2 10005   ZZcz 10238   ZZ>=cuz 10444   [,]cicc 10875   ...cfz 10999   |_cfl 11156   sum_csu 12434   Primecprime 13034   logclog 20405   thetaccht 20826
This theorem is referenced by:  cht2  20908  cht3  20909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-prm 13035  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cht 20832
  Copyright terms: Public domain W3C validator