MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtdif Structured version   Unicode version

Theorem chtdif 23948
Description: The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtdif  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( theta `  N )  -  ( theta `  M )
)  =  sum_ p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ( log `  p
) )
Distinct variable groups:    M, p    N, p

Proof of Theorem chtdif
StepHypRef Expression
1 eluzelre 11169 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
2 chtval 23900 . . . . 5  |-  ( N  e.  RR  ->  ( theta `  N )  = 
sum_ p  e.  (
( 0 [,] N
)  i^i  Prime ) ( log `  p ) )
31, 2syl 17 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( theta `  N )  =  sum_ p  e.  ( ( 0 [,] N )  i^i 
Prime ) ( log `  p
) )
4 eluzel2 11164 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
5 2z 10969 . . . . . . . . . 10  |-  2  e.  ZZ
6 ifcl 3957 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  ->  if ( M  <_ 
2 ,  M , 
2 )  e.  ZZ )
74, 5, 6sylancl 666 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  if ( M  <_  2 ,  M ,  2 )  e.  ZZ )
85a1i 11 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  2  e.  ZZ )
94zred 11040 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  RR )
10 2re 10679 . . . . . . . . . 10  |-  2  e.  RR
11 min2 11484 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  2  e.  RR )  ->  if ( M  <_ 
2 ,  M , 
2 )  <_  2
)
129, 10, 11sylancl 666 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  if ( M  <_  2 ,  M ,  2 )  <_ 
2 )
13 eluz2 11165 . . . . . . . . 9  |-  ( 2  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) )  <->  ( if ( M  <_  2 ,  M ,  2 )  e.  ZZ  /\  2  e.  ZZ  /\  if ( M  <_  2 ,  M ,  2 )  <_  2 ) )
147, 8, 12, 13syl3anbrc 1189 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  2  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) ) )
15 ppisval2 23894 . . . . . . . 8  |-  ( ( N  e.  RR  /\  2  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) ) )  ->  (
( 0 [,] N
)  i^i  Prime )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... ( |_ `  N ) )  i^i 
Prime ) )
161, 14, 15syl2anc 665 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
0 [,] N )  i^i  Prime )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... ( |_ `  N
) )  i^i  Prime ) )
17 eluzelz 11168 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
18 flid 12041 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( |_ `  N )  =  N )
1917, 18syl 17 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( |_ `  N )  =  N )
2019oveq2d 6321 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( if ( M  <_  2 ,  M ,  2 ) ... ( |_ `  N ) )  =  ( if ( M  <_  2 ,  M ,  2 ) ... N ) )
2120ineq1d 3669 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... ( |_ `  N ) )  i^i 
Prime )  =  (
( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i  Prime ) )
2216, 21eqtrd 2470 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
0 [,] N )  i^i  Prime )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i  Prime ) )
2322sumeq1d 13745 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  sum_ p  e.  ( ( 0 [,] N )  i^i  Prime ) ( log `  p
)  =  sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) ( log `  p
) )
249ltp1d 10537 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <  ( M  +  1 ) )
25 fzdisj 11824 . . . . . . . . 9  |-  ( M  <  ( M  + 
1 )  ->  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
2624, 25syl 17 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  ( ( M  + 
1 ) ... N
) )  =  (/) )
2726ineq1d 3669 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  (
( M  +  1 ) ... N ) )  i^i  Prime )  =  ( (/)  i^i  Prime ) )
28 inindir 3686 . . . . . . 7  |-  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  (
( M  +  1 ) ... N ) )  i^i  Prime )  =  ( ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  i^i  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )
29 incom 3661 . . . . . . . 8  |-  ( (/)  i^i 
Prime )  =  ( Prime  i^i  (/) )
30 in0 3794 . . . . . . . 8  |-  ( Prime  i^i  (/) )  =  (/)
3129, 30eqtri 2458 . . . . . . 7  |-  ( (/)  i^i 
Prime )  =  (/)
3227, 28, 313eqtr3g 2493 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime )  i^i  ( ( ( M  +  1 ) ... N )  i^i 
Prime ) )  =  (/) )
33 min1 11483 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  2  e.  RR )  ->  if ( M  <_ 
2 ,  M , 
2 )  <_  M
)
349, 10, 33sylancl 666 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  if ( M  <_  2 ,  M ,  2 )  <_  M )
35 eluz2 11165 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) )  <->  ( if ( M  <_  2 ,  M ,  2 )  e.  ZZ  /\  M  e.  ZZ  /\  if ( M  <_  2 ,  M ,  2 )  <_  M ) )
367, 4, 34, 35syl3anbrc 1189 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) ) )
37 id 23 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( ZZ>= `  M )
)
38 elfzuzb 11792 . . . . . . . . . 10  |-  ( M  e.  ( if ( M  <_  2 ,  M ,  2 ) ... N )  <->  ( M  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) )  /\  N  e.  (
ZZ>= `  M ) ) )
3936, 37, 38sylanbrc 668 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( if ( M  <_ 
2 ,  M , 
2 ) ... N
) )
40 fzsplit 11823 . . . . . . . . 9  |-  ( M  e.  ( if ( M  <_  2 ,  M ,  2 ) ... N )  -> 
( if ( M  <_  2 ,  M ,  2 ) ... N )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  u.  (
( M  +  1 ) ... N ) ) )
4139, 40syl 17 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( if ( M  <_  2 ,  M ,  2 ) ... N )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  u.  ( ( M  + 
1 ) ... N
) ) )
4241ineq1d 3669 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime )  =  (
( ( if ( M  <_  2 ,  M ,  2 ) ... M )  u.  ( ( M  + 
1 ) ... N
) )  i^i  Prime ) )
43 indir 3727 . . . . . . 7  |-  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  u.  (
( M  +  1 ) ... N ) )  i^i  Prime )  =  ( ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  u.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )
4442, 43syl6eq 2486 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime )  =  (
( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  u.  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) ) )
45 fzfid 12183 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( if ( M  <_  2 ,  M ,  2 ) ... N )  e. 
Fin )
46 inss1 3688 . . . . . . 7  |-  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... N
)  i^i  Prime )  C_  ( if ( M  <_ 
2 ,  M , 
2 ) ... N
)
47 ssfi 7798 . . . . . . 7  |-  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  e.  Fin  /\  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime )  C_  ( if ( M  <_  2 ,  M ,  2 ) ... N ) )  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime )  e.  Fin )
4845, 46, 47sylancl 666 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime )  e.  Fin )
49 inss2 3689 . . . . . . . . . . 11  |-  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... N
)  i^i  Prime )  C_  Prime
50 simpr 462 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )  ->  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )
5149, 50sseldi 3468 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )  ->  p  e.  Prime )
52 prmnn 14596 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  NN )
5351, 52syl 17 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )  ->  p  e.  NN )
5453nnrpd 11339 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )  ->  p  e.  RR+ )
5554relogcld 23437 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )  ->  ( log `  p )  e.  RR )
5655recnd 9668 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )  ->  ( log `  p )  e.  CC )
5732, 44, 48, 56fsumsplit 13784 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) ( log `  p
)  =  ( sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ( log `  p
)  +  sum_ p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ( log `  p
) ) )
5823, 57eqtrd 2470 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  sum_ p  e.  ( ( 0 [,] N )  i^i  Prime ) ( log `  p
)  =  ( sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ( log `  p
)  +  sum_ p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ( log `  p
) ) )
593, 58eqtrd 2470 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( theta `  N )  =  (
sum_ p  e.  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) ( log `  p
)  +  sum_ p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ( log `  p
) ) )
60 chtval 23900 . . . . 5  |-  ( M  e.  RR  ->  ( theta `  M )  = 
sum_ p  e.  (
( 0 [,] M
)  i^i  Prime ) ( log `  p ) )
619, 60syl 17 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( theta `  M )  =  sum_ p  e.  ( ( 0 [,] M )  i^i 
Prime ) ( log `  p
) )
62 ppisval2 23894 . . . . . . 7  |-  ( ( M  e.  RR  /\  2  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) ) )  ->  (
( 0 [,] M
)  i^i  Prime )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... ( |_ `  M ) )  i^i 
Prime ) )
639, 14, 62syl2anc 665 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
0 [,] M )  i^i  Prime )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... ( |_ `  M
) )  i^i  Prime ) )
64 flid 12041 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( |_ `  M )  =  M )
654, 64syl 17 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( |_ `  M )  =  M )
6665oveq2d 6321 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( if ( M  <_  2 ,  M ,  2 ) ... ( |_ `  M ) )  =  ( if ( M  <_  2 ,  M ,  2 ) ... M ) )
6766ineq1d 3669 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... ( |_ `  M ) )  i^i 
Prime )  =  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) )
6863, 67eqtrd 2470 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
0 [,] M )  i^i  Prime )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) )
6968sumeq1d 13745 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  sum_ p  e.  ( ( 0 [,] M )  i^i  Prime ) ( log `  p
)  =  sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ( log `  p
) )
7061, 69eqtrd 2470 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( theta `  M )  =  sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ( log `  p
) )
7159, 70oveq12d 6323 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( theta `  N )  -  ( theta `  M )
)  =  ( (
sum_ p  e.  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) ( log `  p
)  +  sum_ p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ( log `  p
) )  -  sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ( log `  p
) ) )
72 fzfi 12182 . . . . . 6  |-  ( if ( M  <_  2 ,  M ,  2 ) ... M )  e. 
Fin
73 inss1 3688 . . . . . 6  |-  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  C_  ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)
74 ssfi 7798 . . . . . 6  |-  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  e.  Fin  /\  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  C_  ( if ( M  <_  2 ,  M ,  2 ) ... M ) )  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  e.  Fin )
7572, 73, 74mp2an 676 . . . . 5  |-  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  e. 
Fin
7675a1i 11 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  e.  Fin )
77 ssun1 3635 . . . . . . 7  |-  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  C_  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  u.  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) )
7877, 44syl5sseqr 3519 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  C_  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... N
)  i^i  Prime ) )
7978sselda 3470 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  ->  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )
8079, 56syldan 472 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  ->  ( log `  p )  e.  CC )
8176, 80fsumcl 13777 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ( log `  p
)  e.  CC )
82 fzfi 12182 . . . . . 6  |-  ( ( M  +  1 ) ... N )  e. 
Fin
83 inss1 3688 . . . . . 6  |-  ( ( ( M  +  1 ) ... N )  i^i  Prime )  C_  (
( M  +  1 ) ... N )
84 ssfi 7798 . . . . . 6  |-  ( ( ( ( M  + 
1 ) ... N
)  e.  Fin  /\  ( ( ( M  +  1 ) ... N )  i^i  Prime ) 
C_  ( ( M  +  1 ) ... N ) )  -> 
( ( ( M  +  1 ) ... N )  i^i  Prime )  e.  Fin )
8582, 83, 84mp2an 676 . . . . 5  |-  ( ( ( M  +  1 ) ... N )  i^i  Prime )  e.  Fin
8685a1i 11 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( M  +  1 ) ... N )  i^i  Prime )  e.  Fin )
87 ssun2 3636 . . . . . . 7  |-  ( ( ( M  +  1 ) ... N )  i^i  Prime )  C_  (
( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  u.  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) )
8887, 44syl5sseqr 3519 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( M  +  1 ) ... N )  i^i  Prime )  C_  (
( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i  Prime ) )
8988sselda 3470 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )  ->  p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) )
9089, 56syldan 472 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )  ->  ( log `  p )  e.  CC )
9186, 90fsumcl 13777 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  sum_ p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ( log `  p
)  e.  CC )
9281, 91pncan2d 9987 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( sum_ p  e.  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime ) ( log `  p )  +  sum_ p  e.  ( ( ( M  + 
1 ) ... N
)  i^i  Prime ) ( log `  p ) )  -  sum_ p  e.  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ( log `  p
) )  =  sum_ p  e.  ( ( ( M  +  1 ) ... N )  i^i 
Prime ) ( log `  p
) )
9371, 92eqtrd 2470 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( theta `  N )  -  ( theta `  M )
)  =  sum_ p  e.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ( log `  p
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870    u. cun 3440    i^i cin 3441    C_ wss 3442   (/)c0 3767   ifcif 3915   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   Fincfn 7577   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    < clt 9674    <_ cle 9675    - cmin 9859   NNcn 10609   2c2 10659   ZZcz 10937   ZZ>=cuz 11159   [,]cicc 11638   ...cfz 11782   |_cfl 12023   sum_csu 13730   Primecprime 14593   logclog 23369   thetaccht 23880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-sin 14101  df-cos 14102  df-pi 14104  df-dvds 14284  df-prm 14594  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699  df-log 23371  df-cht 23886
This theorem is referenced by:  efchtdvds  23949
  Copyright terms: Public domain W3C validator