HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem4 Structured version   Unicode version

Theorem chscllem4 25190
Description: Lemma for chscl 25191. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1  |-  ( ph  ->  A  e.  CH )
chscl.2  |-  ( ph  ->  B  e.  CH )
chscl.3  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
chscl.4  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
chscl.5  |-  ( ph  ->  H  ~~>v  u )
chscl.6  |-  F  =  ( n  e.  NN  |->  ( ( proj h `  A ) `  ( H `  n )
) )
chscl.7  |-  G  =  ( n  e.  NN  |->  ( ( proj h `  B ) `  ( H `  n )
) )
Assertion
Ref Expression
chscllem4  |-  ( ph  ->  u  e.  ( A  +H  B ) )
Distinct variable groups:    u, n, A    ph, n    B, n, u    n, H, u
Allowed substitution hints:    ph( u)    F( u, n)    G( u, n)

Proof of Theorem chscllem4
Dummy variables  x  y  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlimf 24787 . . . . 5  |-  ~~>v  : dom  ~~>v  --> ~H
2 ffun 5664 . . . . 5  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  Fun  ~~>v  )
31, 2ax-mp 5 . . . 4  |-  Fun  ~~>v
4 chscl.5 . . . 4  |-  ( ph  ->  H  ~~>v  u )
5 funbrfv 5834 . . . 4  |-  ( Fun  ~~>v 
->  ( H  ~~>v  u  -> 
(  ~~>v  `  H )  =  u ) )
63, 4, 5mpsyl 63 . . 3  |-  ( ph  ->  (  ~~>v  `  H )  =  u )
7 chscl.4 . . . . . . 7  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
87feqmptd 5848 . . . . . 6  |-  ( ph  ->  H  =  ( k  e.  NN  |->  ( H `
 k ) ) )
97ffvelrnda 5947 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  e.  ( A  +H  B
) )
10 chscl.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CH )
11 chsh 24774 . . . . . . . . . . . 12  |-  ( A  e.  CH  ->  A  e.  SH )
1210, 11syl 16 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  SH )
13 chscl.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CH )
14 chsh 24774 . . . . . . . . . . . 12  |-  ( B  e.  CH  ->  B  e.  SH )
1513, 14syl 16 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  SH )
16 shsel 24864 . . . . . . . . . . 11  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( ( H `  k )  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y ) ) )
1712, 15, 16syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( H `  k )  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y ) ) )
1817biimpa 484 . . . . . . . . 9  |-  ( (
ph  /\  ( H `  k )  e.  ( A  +H  B ) )  ->  E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y ) )
199, 18syldan 470 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y ) )
20 simp3 990 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( H `  k )  =  ( x  +h  y ) )
21 simp1l 1012 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ph )
2221, 10syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  A  e.  CH )
2321, 13syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  B  e.  CH )
24 chscl.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
2521, 24syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  B  C_  ( _|_ `  A ) )
2621, 7syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  H : NN --> ( A  +H  B
) )
2721, 4syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  H  ~~>v  u )
28 chscl.6 . . . . . . . . . . . . 13  |-  F  =  ( n  e.  NN  |->  ( ( proj h `  A ) `  ( H `  n )
) )
29 simp1r 1013 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  k  e.  NN )
30 simp2l 1014 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  x  e.  A
)
31 simp2r 1015 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  y  e.  B
)
3222, 23, 25, 26, 27, 28, 29, 30, 31, 20chscllem3 25189 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  x  =  ( F `  k ) )
33 chsscon2 25052 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  CH  /\  A  e.  CH )  ->  ( B  C_  ( _|_ `  A )  <->  A  C_  ( _|_ `  B ) ) )
3413, 10, 33syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  C_  ( _|_ `  A )  <->  A  C_  ( _|_ `  B ) ) )
3524, 34mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  ( _|_ `  B ) )
3621, 35syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  A  C_  ( _|_ `  B ) )
37 shscom 24869 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  ( B  +H  A ) )
3812, 15, 37syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  +H  B
)  =  ( B  +H  A ) )
39 feq3 5647 . . . . . . . . . . . . . . . 16  |-  ( ( A  +H  B )  =  ( B  +H  A )  ->  ( H : NN --> ( A  +H  B )  <->  H : NN
--> ( B  +H  A
) ) )
4038, 39syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( H : NN --> ( A  +H  B
)  <->  H : NN --> ( B  +H  A ) ) )
417, 40mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  H : NN --> ( B  +H  A ) )
4221, 41syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  H : NN --> ( B  +H  A
) )
43 chscl.7 . . . . . . . . . . . . 13  |-  G  =  ( n  e.  NN  |->  ( ( proj h `  B ) `  ( H `  n )
) )
44 shss 24759 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  SH  ->  A  C_ 
~H )
4512, 44syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  C_  ~H )
4621, 45syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  A  C_  ~H )
4746, 30sseldd 3460 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  x  e.  ~H )
48 shss 24759 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  SH  ->  B  C_ 
~H )
4915, 48syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  C_  ~H )
5021, 49syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  B  C_  ~H )
5150, 31sseldd 3460 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  y  e.  ~H )
52 ax-hvcom 24550 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
5347, 51, 52syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( x  +h  y )  =  ( y  +h  x ) )
5420, 53eqtrd 2493 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( H `  k )  =  ( y  +h  x ) )
5523, 22, 36, 42, 27, 43, 29, 31, 30, 54chscllem3 25189 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  y  =  ( G `  k ) )
5632, 55oveq12d 6213 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( x  +h  y )  =  ( ( F `  k
)  +h  ( G `
 k ) ) )
5720, 56eqtrd 2493 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( H `  k )  =  ( ( F `  k
)  +h  ( G `
 k ) ) )
58573exp 1187 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ( H `  k )  =  ( x  +h  y )  ->  ( H `  k )  =  ( ( F `  k
)  +h  ( G `
 k ) ) ) ) )
5958rexlimdvv 2947 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y )  ->  ( H `  k )  =  ( ( F `
 k )  +h  ( G `  k
) ) ) )
6019, 59mpd 15 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( ( F `  k )  +h  ( G `  k )
) )
6160mpteq2dva 4481 . . . . . 6  |-  ( ph  ->  ( k  e.  NN  |->  ( H `  k ) )  =  ( k  e.  NN  |->  ( ( F `  k )  +h  ( G `  k ) ) ) )
628, 61eqtrd 2493 . . . . 5  |-  ( ph  ->  H  =  ( k  e.  NN  |->  ( ( F `  k )  +h  ( G `  k ) ) ) )
6310, 13, 24, 7, 4, 28chscllem1 25187 . . . . . . 7  |-  ( ph  ->  F : NN --> A )
64 fss 5670 . . . . . . 7  |-  ( ( F : NN --> A  /\  A  C_  ~H )  ->  F : NN --> ~H )
6563, 45, 64syl2anc 661 . . . . . 6  |-  ( ph  ->  F : NN --> ~H )
6613, 10, 35, 41, 4, 43chscllem1 25187 . . . . . . 7  |-  ( ph  ->  G : NN --> B )
67 fss 5670 . . . . . . 7  |-  ( ( G : NN --> B  /\  B  C_  ~H )  ->  G : NN --> ~H )
6866, 49, 67syl2anc 661 . . . . . 6  |-  ( ph  ->  G : NN --> ~H )
6910, 13, 24, 7, 4, 28chscllem2 25188 . . . . . . 7  |-  ( ph  ->  F  e.  dom  ~~>v  )
70 funfvbrb 5920 . . . . . . . 8  |-  ( Fun  ~~>v 
->  ( F  e.  dom  ~~>v  <->  F  ~~>v  (  ~~>v  `  F )
) )
713, 70ax-mp 5 . . . . . . 7  |-  ( F  e.  dom  ~~>v  <->  F  ~~>v  (  ~~>v  `  F ) )
7269, 71sylib 196 . . . . . 6  |-  ( ph  ->  F  ~~>v  (  ~~>v  `  F
) )
7313, 10, 35, 41, 4, 43chscllem2 25188 . . . . . . 7  |-  ( ph  ->  G  e.  dom  ~~>v  )
74 funfvbrb 5920 . . . . . . . 8  |-  ( Fun  ~~>v 
->  ( G  e.  dom  ~~>v  <->  G  ~~>v  (  ~~>v  `  G )
) )
753, 74ax-mp 5 . . . . . . 7  |-  ( G  e.  dom  ~~>v  <->  G  ~~>v  (  ~~>v  `  G ) )
7673, 75sylib 196 . . . . . 6  |-  ( ph  ->  G  ~~>v  (  ~~>v  `  G
) )
77 eqid 2452 . . . . . 6  |-  ( k  e.  NN  |->  ( ( F `  k )  +h  ( G `  k ) ) )  =  ( k  e.  NN  |->  ( ( F `
 k )  +h  ( G `  k
) ) )
7865, 68, 72, 76, 77hlimadd 24742 . . . . 5  |-  ( ph  ->  ( k  e.  NN  |->  ( ( F `  k )  +h  ( G `  k )
) )  ~~>v  ( ( 
~~>v  `  F )  +h  (  ~~>v  `  G )
) )
7962, 78eqbrtrd 4415 . . . 4  |-  ( ph  ->  H  ~~>v  ( (  ~~>v  `  F )  +h  (  ~~>v 
`  G ) ) )
80 funbrfv 5834 . . . 4  |-  ( Fun  ~~>v 
->  ( H  ~~>v  ( ( 
~~>v  `  F )  +h  (  ~~>v  `  G )
)  ->  (  ~~>v  `  H )  =  ( (  ~~>v  `  F )  +h  (  ~~>v  `  G
) ) ) )
813, 79, 80mpsyl 63 . . 3  |-  ( ph  ->  (  ~~>v  `  H )  =  ( (  ~~>v  `  F )  +h  (  ~~>v 
`  G ) ) )
826, 81eqtr3d 2495 . 2  |-  ( ph  ->  u  =  ( ( 
~~>v  `  F )  +h  (  ~~>v  `  G )
) )
83 fvex 5804 . . . . 5  |-  (  ~~>v  `  F )  e.  _V
8483chlimi 24784 . . . 4  |-  ( ( A  e.  CH  /\  F : NN --> A  /\  F  ~~>v  (  ~~>v  `  F
) )  ->  (  ~~>v 
`  F )  e.  A )
8510, 63, 72, 84syl3anc 1219 . . 3  |-  ( ph  ->  (  ~~>v  `  F )  e.  A )
86 fvex 5804 . . . . 5  |-  (  ~~>v  `  G )  e.  _V
8786chlimi 24784 . . . 4  |-  ( ( B  e.  CH  /\  G : NN --> B  /\  G  ~~>v  (  ~~>v  `  G
) )  ->  (  ~~>v 
`  G )  e.  B )
8813, 66, 76, 87syl3anc 1219 . . 3  |-  ( ph  ->  (  ~~>v  `  G )  e.  B )
89 shsva 24870 . . . 4  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( ( (  ~~>v  `  F )  e.  A  /\  (  ~~>v  `  G
)  e.  B )  ->  ( (  ~~>v  `  F )  +h  (  ~~>v 
`  G ) )  e.  ( A  +H  B ) ) )
9012, 15, 89syl2anc 661 . . 3  |-  ( ph  ->  ( ( (  ~~>v  `  F )  e.  A  /\  (  ~~>v  `  G
)  e.  B )  ->  ( (  ~~>v  `  F )  +h  (  ~~>v 
`  G ) )  e.  ( A  +H  B ) ) )
9185, 88, 90mp2and 679 . 2  |-  ( ph  ->  ( (  ~~>v  `  F
)  +h  (  ~~>v  `  G ) )  e.  ( A  +H  B
) )
9282, 91eqeltrd 2540 1  |-  ( ph  ->  u  e.  ( A  +H  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2797    C_ wss 3431   class class class wbr 4395    |-> cmpt 4453   dom cdm 4943   Fun wfun 5515   -->wf 5517   ` cfv 5521  (class class class)co 6195   NNcn 10428   ~Hchil 24468    +h cva 24469    ~~>v chli 24476   SHcsh 24477   CHcch 24478   _|_cort 24479    +H cph 24480   proj hcpjh 24486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-inf2 7953  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-pre-sup 9466  ax-addf 9467  ax-mulf 9468  ax-hilex 24548  ax-hfvadd 24549  ax-hvcom 24550  ax-hvass 24551  ax-hv0cl 24552  ax-hvaddid 24553  ax-hfvmul 24554  ax-hvmulid 24555  ax-hvmulass 24556  ax-hvdistr1 24557  ax-hvdistr2 24558  ax-hvmul0 24559  ax-hfi 24628  ax-his1 24631  ax-his2 24632  ax-his3 24633  ax-his4 24634  ax-hcompl 24751
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-isom 5530  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-of 6425  df-om 6582  df-1st 6682  df-2nd 6683  df-supp 6796  df-recs 6937  df-rdg 6971  df-1o 7025  df-2o 7026  df-oadd 7029  df-er 7206  df-map 7321  df-pm 7322  df-ixp 7369  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-fsupp 7727  df-fi 7767  df-sup 7797  df-oi 7830  df-card 8215  df-cda 8443  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-5 10489  df-6 10490  df-7 10491  df-8 10492  df-9 10493  df-10 10494  df-n0 10686  df-z 10753  df-dec 10862  df-uz 10968  df-q 11060  df-rp 11098  df-xneg 11195  df-xadd 11196  df-xmul 11197  df-icc 11413  df-fz 11550  df-fzo 11661  df-seq 11919  df-exp 11978  df-hash 12216  df-cj 12701  df-re 12702  df-im 12703  df-sqr 12837  df-abs 12838  df-struct 14289  df-ndx 14290  df-slot 14291  df-base 14292  df-sets 14293  df-ress 14294  df-plusg 14365  df-mulr 14366  df-sca 14368  df-vsca 14369  df-ip 14370  df-tset 14371  df-ple 14372  df-ds 14374  df-hom 14376  df-cco 14377  df-rest 14475  df-topn 14476  df-0g 14494  df-gsum 14495  df-topgen 14496  df-pt 14497  df-prds 14500  df-xrs 14554  df-qtop 14559  df-imas 14560  df-xps 14562  df-mre 14638  df-mrc 14639  df-acs 14641  df-mnd 15529  df-submnd 15579  df-mulg 15662  df-cntz 15949  df-cmn 16395  df-psmet 17929  df-xmet 17930  df-met 17931  df-bl 17932  df-mopn 17933  df-top 18630  df-bases 18632  df-topon 18633  df-topsp 18634  df-cn 18958  df-cnp 18959  df-lm 18960  df-haus 19046  df-tx 19262  df-hmeo 19455  df-xms 20022  df-tms 20024  df-cau 20894  df-grpo 23825  df-gid 23826  df-ginv 23827  df-gdiv 23828  df-ablo 23916  df-vc 24071  df-nv 24117  df-va 24120  df-ba 24121  df-sm 24122  df-0v 24123  df-vs 24124  df-nmcv 24125  df-ims 24126  df-hnorm 24517  df-hba 24518  df-hvsub 24520  df-hlim 24521  df-hcau 24522  df-sh 24756  df-ch 24771  df-oc 24802  df-ch0 24803  df-shs 24858  df-pjh 24945
This theorem is referenced by:  chscl  25191
  Copyright terms: Public domain W3C validator