MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval2 Structured version   Unicode version

Theorem chpval2 22560
Description: Express the second Chebyshev function directly as a sum over the primes less than  A (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpval2  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
Distinct variable group:    A, p

Proof of Theorem chpval2
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chpval 22463 . 2  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) (Λ `  n
) )
2 fveq2 5694 . . 3  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
3 id 22 . . 3  |-  ( A  e.  RR  ->  A  e.  RR )
4 elfznn 11481 . . . . . 6  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
54adantl 466 . . . . 5  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
6 vmacl 22459 . . . . 5  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
75, 6syl 16 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n )  e.  RR )
87recnd 9415 . . 3  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n )  e.  CC )
9 simprr 756 . . 3  |-  ( ( A  e.  RR  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
(Λ `  n )  =  0 )
102, 3, 8, 9fsumvma2 22556 . 2  |-  ( A  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) (Λ `  n )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) (Λ `  (
p ^ k ) ) )
11 inss2 3574 . . . . . . 7  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
12 simpr 461 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
1311, 12sseldi 3357 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
14 elfznn 11481 . . . . . 6  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
15 vmappw 22457 . . . . . 6  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
1613, 14, 15syl2an 477 . . . . 5  |-  ( ( ( A  e.  RR  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
1716sumeq2dv 13183 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) (Λ `  (
p ^ k ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
18 fzfid 11798 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
19 prmuz2 13784 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
20 eluzelre 10874 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  2
)  ->  p  e.  RR )
21 eluz2b2 10930 . . . . . . . . . 10  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
2221simprbi 464 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
2320, 22rplogcld 22081 . . . . . . . 8  |-  ( p  e.  ( ZZ>= `  2
)  ->  ( log `  p )  e.  RR+ )
2413, 19, 233syl 20 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
2524rpcnd 11032 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
26 fsumconst 13260 . . . . . 6  |-  ( ( ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin  /\  ( log `  p
)  e.  CC )  ->  sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  ( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
2718, 25, 26syl2anc 661 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
)  =  ( (
# `  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
28 ppisval 22444 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 2 ... ( |_ `  A
) )  i^i  Prime ) )
29 inss1 3573 . . . . . . . . . . . . . 14  |-  ( ( 2 ... ( |_
`  A ) )  i^i  Prime )  C_  (
2 ... ( |_ `  A ) )
3028, 29syl6eqss 3409 . . . . . . . . . . . . 13  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  C_  ( 2 ... ( |_ `  A ) ) )
3130sselda 3359 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 2 ... ( |_ `  A ) ) )
32 elfzuz2 11459 . . . . . . . . . . . 12  |-  ( p  e.  ( 2 ... ( |_ `  A
) )  ->  ( |_ `  A )  e.  ( ZZ>= `  2 )
)
3331, 32syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  A
)  e.  ( ZZ>= ` 
2 ) )
34 simpl 457 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  A  e.  RR )
35 0red 9390 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  0  e.  RR )
36 2re 10394 . . . . . . . . . . . . . 14  |-  2  e.  RR
3736a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  2  e.  RR )
38 2pos 10416 . . . . . . . . . . . . . 14  |-  0  <  2
3938a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  0  <  2 )
40 eluzle 10876 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  A )  e.  ( ZZ>= `  2
)  ->  2  <_  ( |_ `  A ) )
41 2z 10681 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
42 flge 11658 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  2  e.  ZZ )  ->  ( 2  <_  A  <->  2  <_  ( |_ `  A ) ) )
4341, 42mpan2 671 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  (
2  <_  A  <->  2  <_  ( |_ `  A ) ) )
4440, 43syl5ibr 221 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  (
( |_ `  A
)  e.  ( ZZ>= ` 
2 )  ->  2  <_  A ) )
4544imp 429 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  2  <_  A )
4635, 37, 34, 39, 45ltletrd 9534 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  0  <  A )
4734, 46elrpd 11028 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  A  e.  RR+ )
4833, 47syldan 470 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR+ )
4948relogcld 22075 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR )
5049, 24rerpdivcld 11057 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
51 1red 9404 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  1  e.  RR )
52 1lt2 10491 . . . . . . . . . . . . . 14  |-  1  <  2
5352a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  1  <  2 )
5451, 37, 34, 53, 45ltletrd 9534 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  2
) )  ->  1  <  A )
5533, 54syldan 470 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  A )
56 rplogcl 22056 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( log `  A
)  e.  RR+ )
5755, 56syldan 470 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR+ )
5857, 24rpdivcld 11047 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR+ )
5958rpge0d 11034 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( ( log `  A )  / 
( log `  p
) ) )
60 flge0nn0 11669 . . . . . . . 8  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  0  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
6150, 59, 60syl2anc 661 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
62 hashfz1 12120 . . . . . . 7  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
6361, 62syl 16 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( # `  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
6463oveq1d 6109 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) )  =  ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  x.  ( log `  p ) ) )
6561nn0cnd 10641 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  CC )
6665, 25mulcomd 9410 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  x.  ( log `  p
) )  =  ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
6727, 64, 663eqtrd 2479 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
)  =  ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )
6817, 67eqtrd 2475 . . 3  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) (Λ `  (
p ^ k ) )  =  ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )
6968sumeq2dv 13183 . 2  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) (Λ `  (
p ^ k ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
701, 10, 693eqtrd 2479 1  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    i^i cin 3330   class class class wbr 4295   ` cfv 5421  (class class class)co 6094   Fincfn 7313   CCcc 9283   RRcr 9284   0cc0 9285   1c1 9286    x. cmul 9290    < clt 9421    <_ cle 9422    / cdiv 9996   NNcn 10325   2c2 10374   NN0cn0 10582   ZZcz 10649   ZZ>=cuz 10864   RR+crp 10994   [,]cicc 11306   ...cfz 11440   |_cfl 11643   ^cexp 11868   #chash 12106   sum_csu 13166   Primecprime 13766   logclog 22009  Λcvma 22432  ψcchp 22433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ioc 11308  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-fac 12055  df-bc 12082  df-hash 12107  df-shft 12559  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-limsup 12952  df-clim 12969  df-rlim 12970  df-sum 13167  df-ef 13356  df-sin 13358  df-cos 13359  df-pi 13361  df-dvds 13539  df-gcd 13694  df-prm 13767  df-pc 13907  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-hom 14265  df-cco 14266  df-rest 14364  df-topn 14365  df-0g 14383  df-gsum 14384  df-topgen 14385  df-pt 14386  df-prds 14389  df-xrs 14443  df-qtop 14448  df-imas 14449  df-xps 14451  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-submnd 15468  df-mulg 15551  df-cntz 15838  df-cmn 16282  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-fbas 17817  df-fg 17818  df-cnfld 17822  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-cld 18626  df-ntr 18627  df-cls 18628  df-nei 18705  df-lp 18743  df-perf 18744  df-cn 18834  df-cnp 18835  df-haus 18922  df-tx 19138  df-hmeo 19331  df-fil 19422  df-fm 19514  df-flim 19515  df-flf 19516  df-xms 19898  df-ms 19899  df-tms 19900  df-cncf 20457  df-limc 21344  df-dv 21345  df-log 22011  df-vma 22438  df-chp 22439
This theorem is referenced by:  chpchtsum  22561  chpub  22562
  Copyright terms: Public domain W3C validator