MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpub Structured version   Visualization version   Unicode version

Theorem chpub 24141
Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpub  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) )

Proof of Theorem chpub
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 chpcl 24044 . . . . 5  |-  ( A  e.  RR  ->  (ψ `  A )  e.  RR )
21adantr 467 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  e.  RR )
3 chtcl 24029 . . . . 5  |-  ( A  e.  RR  ->  ( theta `  A )  e.  RR )
43adantr 467 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( theta `  A )  e.  RR )
52, 4resubcld 10044 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  e.  RR )
6 simpl 459 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR )
7 0red 9641 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  e.  RR )
8 1red 9655 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  e.  RR )
9 0lt1 10133 . . . . . . . . . 10  |-  0  <  1
109a1i 11 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  1 )
11 simpr 463 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  <_  A )
127, 8, 6, 10, 11ltletrd 9792 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  A )
136, 12elrpd 11335 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR+ )
1413rpge0d 11342 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  A )
156, 14resqrtcld 13472 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( sqr `  A
)  e.  RR )
16 ppifi 24025 . . . . 5  |-  ( ( sqr `  A )  e.  RR  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  e.  Fin )
1715, 16syl 17 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin )
1813adantr 467 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  A  e.  RR+ )
1918relogcld 23565 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR )
2017, 19fsumrecl 13793 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  e.  RR )
2113relogcld 23565 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  A
)  e.  RR )
2215, 21remulcld 9668 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
)  x.  ( log `  A ) )  e.  RR )
23 ppifi 24025 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
2423adantr 467 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] A )  i^i  Prime )  e.  Fin )
25 inss2 3652 . . . . . . . . . . . 12  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
26 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  ( ( 0 [,] A
)  i^i  Prime ) )
2725, 26sseldi 3429 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  Prime )
28 prmnn 14618 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
2927, 28syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  NN )
3029nnrpd 11336 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  RR+ )
3130relogcld 23565 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  RR )
3221adantr 467 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  A
)  e.  RR )
3329nnred 10621 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  RR )
34 prmuz2 14635 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
3527, 34syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  (
ZZ>= `  2 ) )
36 eluz2b2 11228 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
3736simprbi 466 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
3835, 37syl 17 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  1  <  p
)
3933, 38rplogcld 23571 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  RR+ )
4032, 39rerpdivcld 11366 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  A )  /  ( log `  p ) )  e.  RR )
41 reflcl 12029 . . . . . . . . 9  |-  ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  RR )
4240, 41syl 17 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  RR )
4331, 42remulcld 9668 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  RR )
4443recnd 9666 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  CC )
4531recnd 9666 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  CC )
4624, 44, 45fsumsub 13842 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  ( sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( log `  p
) ) )
47 0le0 10696 . . . . . . . . 9  |-  0  <_  0
4847a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  0 )
498, 6, 6, 14, 11lemul2ad 10544 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A  x.  1 )  <_  ( A  x.  A ) )
506recnd 9666 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  CC )
5150sqsqrtd 13494 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
5250mulid1d 9657 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A  x.  1 )  =  A )
5351, 52eqtr4d 2487 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  ( A  x.  1 ) )
5450sqvald 12410 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A ^ 2 )  =  ( A  x.  A ) )
5549, 53, 543brtr4d 4432 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  <_  ( A ^
2 ) )
566, 14sqrtge0d 13475 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  ( sqr `  A ) )
5715, 6, 56, 14le2sqd 12448 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
)  <_  A  <->  ( ( sqr `  A ) ^
2 )  <_  ( A ^ 2 ) ) )
5855, 57mpbird 236 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( sqr `  A
)  <_  A )
59 iccss 11699 . . . . . . . 8  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( 0  <_ 
0  /\  ( sqr `  A )  <_  A
) )  ->  (
0 [,] ( sqr `  A ) )  C_  ( 0 [,] A
) )
607, 6, 48, 58, 59syl22anc 1268 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 0 [,] ( sqr `  A ) ) 
C_  ( 0 [,] A ) )
61 ssrin 3656 . . . . . . 7  |-  ( ( 0 [,] ( sqr `  A ) )  C_  ( 0 [,] A
)  ->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  ( ( 0 [,] A )  i^i  Prime ) )
6260, 61syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) 
C_  ( ( 0 [,] A )  i^i 
Prime ) )
6362sselda 3431 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
6443, 31resubcld 10044 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  RR )
6564recnd 9666 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  CC )
6663, 65syldan 473 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  CC )
67 eldifi 3554 . . . . . . . . . . . . . . 15  |-  ( p  e.  ( ( ( 0 [,] A )  i^i  Prime )  \  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
6867, 45sylan2 477 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  e.  CC )
6968mulid2d 9658 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
1  x.  ( log `  p ) )  =  ( log `  p
) )
70 inss1 3651 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
7170, 26sseldi 3429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  ( 0 [,] A ) )
72 0re 9640 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
736adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  A  e.  RR )
74 elicc2 11696 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
7572, 73, 74sylancr 668 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( p  e.  ( 0 [,] A
)  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) ) )
7671, 75mpbid 214 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) )
7776simp3d 1021 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  <_  A
)
7867, 77sylan2 477 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  <_  A )
7967, 30sylan2 477 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  RR+ )
8013adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  RR+ )
8179, 80logled 23569 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  <_  A  <->  ( log `  p )  <_  ( log `  A ) ) )
8278, 81mpbid 214 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  <_ 
( log `  A
) )
8369, 82eqbrtrd 4422 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
1  x.  ( log `  p ) )  <_ 
( log `  A
) )
84 1red 9655 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  1  e.  RR )
8521adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  e.  RR )
8667, 39sylan2 477 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  e.  RR+ )
8784, 85, 86lemuldivd 11384 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( 1  x.  ( log `  p ) )  <_  ( log `  A
)  <->  1  <_  (
( log `  A
)  /  ( log `  p ) ) ) )
8883, 87mpbid 214 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  1  <_  ( ( log `  A
)  /  ( log `  p ) ) )
896adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  RR )
9089recnd 9666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  CC )
9190sqsqrtd 13494 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
) ^ 2 )  =  A )
92 eldifn 3555 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  ( ( ( 0 [,] A )  i^i  Prime )  \  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  -.  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )
9392adantl 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  -.  p  e.  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )
9467, 27sylan2 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  Prime )
95 elin 3616 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  <-> 
( p  e.  ( 0 [,] ( sqr `  A ) )  /\  p  e.  Prime ) )
9695rbaib 916 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  Prime  ->  ( p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  <-> 
p  e.  ( 0 [,] ( sqr `  A
) ) ) )
9794, 96syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  <->  p  e.  (
0 [,] ( sqr `  A ) ) ) )
98 0red 9641 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  e.  RR )
9915adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( sqr `  A )  e.  RR )
10067, 29sylan2 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  NN )
101100nnred 10621 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  RR )
10279rpge0d 11342 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  <_  p )
103 elicc2 11696 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0  e.  RR  /\  ( sqr `  A )  e.  RR )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( sqr `  A ) ) ) )
104 df-3an 986 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( sqr `  A
) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( sqr `  A
) ) )
105103, 104syl6bb 265 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0  e.  RR  /\  ( sqr `  A )  e.  RR )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( sqr `  A
) ) ) )
106105baibd 919 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 0  e.  RR  /\  ( sqr `  A
)  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  p  <_  ( sqr `  A ) ) )
10798, 99, 101, 102, 106syl22anc 1268 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( 0 [,] ( sqr `  A
) )  <->  p  <_  ( sqr `  A ) ) )
10897, 107bitrd 257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  <->  p  <_  ( sqr `  A ) ) )
10993, 108mtbid 302 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  -.  p  <_  ( sqr `  A
) )
11099, 101ltnled 9779 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
)  <  p  <->  -.  p  <_  ( sqr `  A
) ) )
111109, 110mpbird 236 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( sqr `  A )  < 
p )
11256adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  <_  ( sqr `  A
) )
11399, 101, 112, 102lt2sqd 12447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
)  <  p  <->  ( ( sqr `  A ) ^
2 )  <  (
p ^ 2 ) ) )
114111, 113mpbid 214 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
) ^ 2 )  <  ( p ^
2 ) )
11591, 114eqbrtrrd 4424 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  <  ( p ^ 2 ) )
116100nnsqcld 12433 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p ^ 2 )  e.  NN )
117116nnrpd 11336 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p ^ 2 )  e.  RR+ )
118 logltb 23542 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR+  /\  (
p ^ 2 )  e.  RR+ )  ->  ( A  <  ( p ^
2 )  <->  ( log `  A )  <  ( log `  ( p ^
2 ) ) ) )
11980, 117, 118syl2anc 666 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( A  <  ( p ^
2 )  <->  ( log `  A )  <  ( log `  ( p ^
2 ) ) ) )
120115, 119mpbid 214 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  < 
( log `  (
p ^ 2 ) ) )
121 2z 10966 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
122 relogexp 23538 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( p ^
2 ) )  =  ( 2  x.  ( log `  p ) ) )
12379, 121, 122sylancl 667 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  ( p ^
2 ) )  =  ( 2  x.  ( log `  p ) ) )
124120, 123breqtrd 4426 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  < 
( 2  x.  ( log `  p ) ) )
125 2re 10676 . . . . . . . . . . . . . . 15  |-  2  e.  RR
126125a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  2  e.  RR )
12785, 126, 86ltdivmul2d 11387 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  A
)  /  ( log `  p ) )  <  2  <->  ( log `  A
)  <  ( 2  x.  ( log `  p
) ) ) )
128124, 127mpbird 236 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  <  2 )
129 df-2 10665 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
130128, 129syl6breq 4441 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  < 
( 1  +  1 ) )
13167, 40sylan2 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  e.  RR )
132 1z 10964 . . . . . . . . . . . 12  |-  1  e.  ZZ
133 flbi 12048 . . . . . . . . . . . 12  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  1  e.  ZZ )  ->  (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  =  1  <->  ( 1  <_  ( ( log `  A )  /  ( log `  p ) )  /\  ( ( log `  A )  /  ( log `  p ) )  <  ( 1  +  1 ) ) ) )
134131, 132, 133sylancl 667 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  =  1  <->  ( 1  <_  ( ( log `  A )  /  ( log `  p ) )  /\  ( ( log `  A )  /  ( log `  p ) )  <  ( 1  +  1 ) ) ) )
13588, 130, 134mpbir2and 932 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  =  1 )
136135oveq2d 6304 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( ( log `  p
)  x.  1 ) )
13768mulid1d 9657 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  1 )  =  ( log `  p
) )
138136, 137eqtrd 2484 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( log `  p ) )
139138oveq1d 6303 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  ( ( log `  p )  -  ( log `  p ) ) )
14068subidd 9971 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  -  ( log `  p ) )  =  0 )
141139, 140eqtrd 2484 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  0 )
14262, 66, 141, 24fsumss 13784 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) ) )
143 chpval2 24139 . . . . . . 7  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
144143adantr 467 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
145 chtval 24030 . . . . . . 7  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
146145adantr 467 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( theta `  A )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
147144, 146oveq12d 6306 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  =  ( sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( log `  p
) ) )
14846, 142, 1473eqtr4rd 2495 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  = 
sum_ p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) ) )
14963, 64syldan 473 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  RR )
15063, 43syldan 473 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  RR )
15163, 39syldan 473 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
152151rpge0d 11342 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
0  <_  ( log `  p ) )
153 inss2 3652 . . . . . . . . . . . 12  |-  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  Prime
154 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )
155153, 154sseldi 3429 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  Prime )
156155, 28syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  NN )
157156nnrpd 11336 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  RR+ )
158157relogcld 23565 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
159150, 158subge02d 10202 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( 0  <_  ( log `  p )  <->  ( (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ) )
160152, 159mpbid 214 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
16163, 40syldan 473 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
162 flle 12032 . . . . . . . 8  |-  ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) )
163161, 162syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) )
16463, 42syldan 473 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  RR )
165164, 19, 151lemuldiv2d 11385 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <_  ( log `  A )  <->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) ) )
166163, 165mpbird 236 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  <_  ( log `  A ) )
167149, 150, 19, 160, 166letrd 9789 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( log `  A
) )
16817, 149, 19, 167fsumle 13852 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
) )
169148, 168eqbrtrd 4422 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  <_  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
) )
17021recnd 9666 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  A
)  e.  CC )
171 fsumconst 13844 . . . . 5  |-  ( ( ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin  /\  ( log `  A )  e.  CC )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ( log `  A
)  =  ( (
# `  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )  x.  ( log `  A ) ) )
17217, 170, 171syl2anc 666 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  =  ( (
# `  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )  x.  ( log `  A ) ) )
173 hashcl 12535 . . . . . . 7  |-  ( ( ( 0 [,] ( sqr `  A ) )  i^i  Prime )  e.  Fin  ->  ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  e. 
NN0 )
17417, 173syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  e.  NN0 )
175174nn0red 10923 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  e.  RR )
176 logge0 23547 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  ( log `  A ) )
177 reflcl 12029 . . . . . . 7  |-  ( ( sqr `  A )  e.  RR  ->  ( |_ `  ( sqr `  A
) )  e.  RR )
17815, 177syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  e.  RR )
179 fzfid 12183 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1 ... ( |_ `  ( sqr `  A
) ) )  e. 
Fin )
180 ppisval 24023 . . . . . . . . . . 11  |-  ( ( sqr `  A )  e.  RR  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  =  ( ( 2 ... ( |_ `  ( sqr `  A
) ) )  i^i 
Prime ) )
18115, 180syl 17 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  =  ( ( 2 ... ( |_ `  ( sqr `  A ) ) )  i^i  Prime ) )
182 inss1 3651 . . . . . . . . . . 11  |-  ( ( 2 ... ( |_
`  ( sqr `  A
) ) )  i^i 
Prime )  C_  ( 2 ... ( |_ `  ( sqr `  A ) ) )
183 2eluzge1 11202 . . . . . . . . . . . 12  |-  2  e.  ( ZZ>= `  1 )
184 fzss1 11834 . . . . . . . . . . . 12  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... ( |_ `  ( sqr `  A ) ) )  C_  (
1 ... ( |_ `  ( sqr `  A ) ) ) )
185183, 184mp1i 13 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 2 ... ( |_ `  ( sqr `  A
) ) )  C_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
186182, 185syl5ss 3442 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 2 ... ( |_ `  ( sqr `  A ) ) )  i^i  Prime )  C_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
187181, 186eqsstrd 3465 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) 
C_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )
188 ssdomg 7612 . . . . . . . . 9  |-  ( ( 1 ... ( |_
`  ( sqr `  A
) ) )  e. 
Fin  ->  ( ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  ( 1 ... ( |_ `  ( sqr `  A ) ) )  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
189179, 187, 188sylc 62 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
190 hashdom 12555 . . . . . . . . 9  |-  ( ( ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin  /\  (
1 ... ( |_ `  ( sqr `  A ) ) )  e.  Fin )  ->  ( ( # `  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) )  <_  ( # `  (
1 ... ( |_ `  ( sqr `  A ) ) ) )  <->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
19117, 179, 190syl2anc 666 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  <_ 
( # `  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )  <->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
192189, 191mpbird 236 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( # `
 ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
193 flge0nn0 12051 . . . . . . . . 9  |-  ( ( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) )  ->  ( |_ `  ( sqr `  A
) )  e.  NN0 )
19415, 56, 193syl2anc 666 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  e.  NN0 )
195 hashfz1 12526 . . . . . . . 8  |-  ( ( |_ `  ( sqr `  A ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( sqr `  A ) ) ) )  =  ( |_ `  ( sqr `  A ) ) )
196194, 195syl 17 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )  =  ( |_ `  ( sqr `  A ) ) )
197192, 196breqtrd 4426 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( |_ `  ( sqr `  A
) ) )
198 flle 12032 . . . . . . 7  |-  ( ( sqr `  A )  e.  RR  ->  ( |_ `  ( sqr `  A
) )  <_  ( sqr `  A ) )
19915, 198syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  <_  ( sqr `  A
) )
200175, 178, 15, 197, 199letrd 9789 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( sqr `  A ) )
201175, 15, 21, 176, 200lemul1ad 10543 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  x.  ( log `  A
) )  <_  (
( sqr `  A
)  x.  ( log `  A ) ) )
202172, 201eqbrtrd 4422 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  <_  ( ( sqr `  A )  x.  ( log `  A
) ) )
2035, 20, 22, 169, 202letrd 9789 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  <_ 
( ( sqr `  A
)  x.  ( log `  A ) ) )
2042, 4, 22lesubadd2d 10209 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( (ψ `  A )  -  ( theta `  A ) )  <_  ( ( sqr `  A )  x.  ( log `  A ) )  <-> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) ) )
205203, 204mpbid 214 1  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    \ cdif 3400    i^i cin 3402    C_ wss 3403   class class class wbr 4401   ` cfv 5581  (class class class)co 6288    ~<_ cdom 7564   Fincfn 7566   CCcc 9534   RRcr 9535   0cc0 9536   1c1 9537    + caddc 9539    x. cmul 9541    < clt 9672    <_ cle 9673    - cmin 9857    / cdiv 10266   NNcn 10606   2c2 10656   NN0cn0 10866   ZZcz 10934   ZZ>=cuz 11156   RR+crp 11299   [,]cicc 11635   ...cfz 11781   |_cfl 12023   ^cexp 12269   #chash 12512   sqrcsqrt 13289   sum_csu 13745   Primecprime 14615   logclog 23497   thetaccht 24010  ψcchp 24012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615  ax-mulf 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-iin 4280  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-om 6690  df-1st 6790  df-2nd 6791  df-supp 6912  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-er 7360  df-map 7471  df-pm 7472  df-ixp 7520  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fsupp 7881  df-fi 7922  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-7 10670  df-8 10671  df-9 10672  df-10 10673  df-n0 10867  df-z 10935  df-dec 11049  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ioo 11636  df-ioc 11637  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13123  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-ef 14114  df-sin 14116  df-cos 14117  df-pi 14119  df-dvds 14299  df-gcd 14462  df-prm 14616  df-pc 14780  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19914  df-bases 19915  df-topon 19916  df-topsp 19917  df-cld 20027  df-ntr 20028  df-cls 20029  df-nei 20107  df-lp 20145  df-perf 20146  df-cn 20236  df-cnp 20237  df-haus 20324  df-tx 20570  df-hmeo 20763  df-fil 20854  df-fm 20946  df-flim 20947  df-flf 20948  df-xms 21328  df-ms 21329  df-tms 21330  df-cncf 21903  df-limc 22814  df-dv 22815  df-log 23499  df-cht 24016  df-vma 24017  df-chp 24018
This theorem is referenced by:  chpchtlim  24310
  Copyright terms: Public domain W3C validator