MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpo1ubb Structured version   Unicode version

Theorem chpo1ubb 23867
Description: The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 31-May-2016.)
Assertion
Ref Expression
chpo1ubb  |-  E. c  e.  RR+  A. x  e.  RR+  (ψ `  x )  <_  ( c  x.  x
)
Distinct variable group:    x, c

Proof of Theorem chpo1ubb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rpssre 11231 . . . . 5  |-  RR+  C_  RR
21a1i 11 . . . 4  |-  ( T. 
->  RR+  C_  RR )
3 1red 9600 . . . 4  |-  ( T. 
->  1  e.  RR )
4 simpr 459 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  e.  RR+ )
54rpred 11259 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  e.  RR )
6 chpcl 23599 . . . . . 6  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
75, 6syl 16 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  (ψ `  x )  e.  RR )
87, 4rerpdivcld 11286 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
9 chpo1ub 23866 . . . . . 6  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O(1)
109a1i 11 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O(1) )
118, 10o1lo1d 13447 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e. 
<_O(1) )
12 chpcl 23599 . . . . . 6  |-  ( y  e.  RR  ->  (ψ `  y )  e.  RR )
1312ad2antrl 725 . . . . 5  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
(ψ `  y )  e.  RR )
1413rehalfcld 10781 . . . 4  |-  ( ( T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( (ψ `  y
)  /  2 )  e.  RR )
155adantr 463 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR )
16 chpeq0 23684 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
(ψ `  x )  =  0  <->  x  <  2 ) )
1715, 16syl 16 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  =  0  <-> 
x  <  2 ) )
1817biimpar 483 . . . . . . 7  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  x  <  2 )  -> 
(ψ `  x )  =  0 )
1918oveq1d 6285 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  x  <  2 )  -> 
( (ψ `  x
)  /  x )  =  ( 0  /  x ) )
204adantr 463 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR+ )
2120rpcnd 11261 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  CC )
2220rpne0d 11264 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  =/=  0 )
2321, 22div0d 10315 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 0  /  x )  =  0 )
2413ad2ant2r 744 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  RR )
25 2rp 11226 . . . . . . . . . 10  |-  2  e.  RR+
2625a1i 11 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR+ )
27 simprll 761 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR )
28 chpge0 23601 . . . . . . . . . 10  |-  ( y  e.  RR  ->  0  <_  (ψ `  y )
)
2927, 28syl 16 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  y ) )
3024, 26, 29divge0d 11295 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( (ψ `  y )  /  2 ) )
3123, 30eqbrtrd 4459 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 0  /  x )  <_ 
( (ψ `  y
)  /  2 ) )
3231adantr 463 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  x  <  2 )  -> 
( 0  /  x
)  <_  ( (ψ `  y )  /  2
) )
3319, 32eqbrtrd 4459 . . . . 5  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  x  <  2 )  -> 
( (ψ `  x
)  /  x )  <_  ( (ψ `  y )  /  2
) )
347ad2antrr 723 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
(ψ `  x )  e.  RR )
3524adantr 463 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
(ψ `  y )  e.  RR )
3625a1i 11 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
2  e.  RR+ )
3715adantr 463 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  ->  x  e.  RR )
38 chpge0 23601 . . . . . . 7  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
3937, 38syl 16 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
0  <_  (ψ `  x
) )
4027adantr 463 . . . . . . 7  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
y  e.  RR )
41 simprr 755 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <  y )
4215, 27, 41ltled 9722 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <_  y )
4342adantr 463 . . . . . . 7  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  ->  x  <_  y )
44 chpwordi 23632 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  (ψ `  x )  <_  (ψ `  y ) )
4537, 40, 43, 44syl3anc 1226 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
(ψ `  x )  <_  (ψ `  y )
)
46 simpr 459 . . . . . 6  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
2  <_  x )
4734, 35, 36, 37, 39, 45, 46lediv12ad 11314 . . . . 5  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
( (ψ `  x
)  /  x )  <_  ( (ψ `  y )  /  2
) )
48 2re 10601 . . . . . 6  |-  2  e.  RR
4948a1i 11 . . . . 5  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR )
5033, 47, 15, 49ltlecasei 9681 . . . 4  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  /  x
)  <_  ( (ψ `  y )  /  2
) )
512, 3, 8, 11, 14, 50lo1bddrp 13433 . . 3  |-  ( T. 
->  E. c  e.  RR+  A. x  e.  RR+  (
(ψ `  x )  /  x )  <_  c
)
5251trud 1407 . 2  |-  E. c  e.  RR+  A. x  e.  RR+  ( (ψ `  x
)  /  x )  <_  c
53 simpr 459 . . . . . . 7  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5453rpred 11259 . . . . . 6  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  x  e.  RR )
5554, 6syl 16 . . . . 5  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  (ψ `  x )  e.  RR )
56 simpl 455 . . . . . 6  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  c  e.  RR+ )
5756rpred 11259 . . . . 5  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  c  e.  RR )
5855, 57, 53ledivmul2d 11309 . . . 4  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  (
( (ψ `  x
)  /  x )  <_  c  <->  (ψ `  x
)  <_  ( c  x.  x ) ) )
5958ralbidva 2890 . . 3  |-  ( c  e.  RR+  ->  ( A. x  e.  RR+  ( (ψ `  x )  /  x
)  <_  c  <->  A. x  e.  RR+  (ψ `  x
)  <_  ( c  x.  x ) ) )
6059rexbiia 2955 . 2  |-  ( E. c  e.  RR+  A. x  e.  RR+  ( (ψ `  x )  /  x
)  <_  c  <->  E. c  e.  RR+  A. x  e.  RR+  (ψ `  x )  <_  ( c  x.  x
) )
6152, 60mpbi 208 1  |-  E. c  e.  RR+  A. x  e.  RR+  (ψ `  x )  <_  ( c  x.  x
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398   T. wtru 1399    e. wcel 1823   A.wral 2804   E.wrex 2805    C_ wss 3461   class class class wbr 4439    |-> cmpt 4497   ` cfv 5570  (class class class)co 6270   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    < clt 9617    <_ cle 9618    / cdiv 10202   2c2 10581   RR+crp 11221   O(1)co1 13394  ψcchp 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12093  df-exp 12152  df-fac 12339  df-bc 12366  df-hash 12391  df-shft 12985  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-limsup 13379  df-clim 13396  df-rlim 13397  df-o1 13398  df-lo1 13399  df-sum 13594  df-ef 13888  df-e 13889  df-sin 13890  df-cos 13891  df-pi 13893  df-dvds 14074  df-gcd 14232  df-prm 14305  df-pc 14448  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-mulr 14801  df-starv 14802  df-sca 14803  df-vsca 14804  df-ip 14805  df-tset 14806  df-ple 14807  df-ds 14809  df-unif 14810  df-hom 14811  df-cco 14812  df-rest 14915  df-topn 14916  df-0g 14934  df-gsum 14935  df-topgen 14936  df-pt 14937  df-prds 14940  df-xrs 14994  df-qtop 14999  df-imas 15000  df-xps 15002  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-submnd 16169  df-mulg 16262  df-cntz 16557  df-cmn 17002  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-mopn 18613  df-fbas 18614  df-fg 18615  df-cnfld 18619  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-cld 19690  df-ntr 19691  df-cls 19692  df-nei 19769  df-lp 19807  df-perf 19808  df-cn 19898  df-cnp 19899  df-haus 19986  df-tx 20232  df-hmeo 20425  df-fil 20516  df-fm 20608  df-flim 20609  df-flf 20610  df-xms 20992  df-ms 20993  df-tms 20994  df-cncf 21551  df-limc 22439  df-dv 22440  df-log 23113  df-cxp 23114  df-cht 23571  df-vma 23572  df-chp 23573  df-ppi 23574
This theorem is referenced by:  pntrlog2bndlem3  23965
  Copyright terms: Public domain W3C validator