MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdifbndlem1 Unicode version

Theorem chpdifbndlem1 21200
Description: Lemma for chpdifbnd 21202. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
chpdifbnd.a  |-  ( ph  ->  A  e.  RR+ )
chpdifbnd.1  |-  ( ph  ->  1  <_  A )
chpdifbnd.b  |-  ( ph  ->  B  e.  RR+ )
chpdifbnd.2  |-  ( ph  ->  A. z  e.  ( 1 [,)  +oo )
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B
)
chpdifbnd.c  |-  C  =  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )
chpdifbnd.x  |-  ( ph  ->  X  e.  ( 1 (,)  +oo ) )
chpdifbnd.y  |-  ( ph  ->  Y  e.  ( X [,] ( A  x.  X ) ) )
Assertion
Ref Expression
chpdifbndlem1  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) ) )
Distinct variable groups:    z, m, C    z, X    z, Y    z, B
Allowed substitution hints:    ph( z, m)    A( z, m)    B( m)    X( m)    Y( m)

Proof of Theorem chpdifbndlem1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 chpdifbnd.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( X [,] ( A  x.  X ) ) )
2 ioossre 10928 . . . . . . . . . . 11  |-  ( 1 (,)  +oo )  C_  RR
3 chpdifbnd.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( 1 (,)  +oo ) )
42, 3sseldi 3306 . . . . . . . . . 10  |-  ( ph  ->  X  e.  RR )
5 chpdifbnd.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
65rpred 10604 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
76, 4remulcld 9072 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  X
)  e.  RR )
8 elicc2 10931 . . . . . . . . . 10  |-  ( ( X  e.  RR  /\  ( A  x.  X
)  e.  RR )  ->  ( Y  e.  ( X [,] ( A  x.  X )
)  <->  ( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X )
) ) )
94, 7, 8syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( Y  e.  ( X [,] ( A  x.  X ) )  <-> 
( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X ) ) ) )
101, 9mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X ) ) )
1110simp1d 969 . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
12 chpcl 20860 . . . . . . 7  |-  ( Y  e.  RR  ->  (ψ `  Y )  e.  RR )
1311, 12syl 16 . . . . . 6  |-  ( ph  ->  (ψ `  Y )  e.  RR )
14 chpcl 20860 . . . . . . 7  |-  ( X  e.  RR  ->  (ψ `  X )  e.  RR )
154, 14syl 16 . . . . . 6  |-  ( ph  ->  (ψ `  X )  e.  RR )
1613, 15resubcld 9421 . . . . 5  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  e.  RR )
17 0re 9047 . . . . . . . . 9  |-  0  e.  RR
1817a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
19 1re 9046 . . . . . . . . 9  |-  1  e.  RR
2019a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
21 0lt1 9506 . . . . . . . . 9  |-  0  <  1
2221a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
23 eliooord 10926 . . . . . . . . . 10  |-  ( X  e.  ( 1 (,) 
+oo )  ->  (
1  <  X  /\  X  <  +oo ) )
243, 23syl 16 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  X  /\  X  <  +oo )
)
2524simpld 446 . . . . . . . 8  |-  ( ph  ->  1  <  X )
2618, 20, 4, 22, 25lttrd 9187 . . . . . . 7  |-  ( ph  ->  0  <  X )
274, 26elrpd 10602 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
2827relogcld 20471 . . . . 5  |-  ( ph  ->  ( log `  X
)  e.  RR )
2916, 28remulcld 9072 . . . 4  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  e.  RR )
30 2re 10025 . . . . . . 7  |-  2  e.  RR
3111, 4resubcld 9421 . . . . . . 7  |-  ( ph  ->  ( Y  -  X
)  e.  RR )
32 remulcl 9031 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( Y  -  X
)  e.  RR )  ->  ( 2  x.  ( Y  -  X
) )  e.  RR )
3330, 31, 32sylancr 645 . . . . . 6  |-  ( ph  ->  ( 2  x.  ( Y  -  X )
)  e.  RR )
3433, 28remulcld 9072 . . . . 5  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  e.  RR )
35 chpdifbnd.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR+ )
3635rpred 10604 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
3711, 4readdcld 9071 . . . . . . 7  |-  ( ph  ->  ( Y  +  X
)  e.  RR )
3836, 37remulcld 9072 . . . . . 6  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  e.  RR )
395relogcld 20471 . . . . . . . 8  |-  ( ph  ->  ( log `  A
)  e.  RR )
40 remulcl 9031 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( log `  A )  e.  RR )  -> 
( 2  x.  ( log `  A ) )  e.  RR )
4130, 39, 40sylancr 645 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( log `  A ) )  e.  RR )
4241, 11remulcld 9072 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  e.  RR )
4338, 42readdcld 9071 . . . . 5  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  e.  RR )
4434, 43readdcld 9071 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  e.  RR )
45 chpdifbnd.c . . . . . . 7  |-  C  =  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )
46 peano2re 9195 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
476, 46syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A  +  1 )  e.  RR )
4836, 47remulcld 9072 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( A  +  1 ) )  e.  RR )
49 remulcl 9031 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
5030, 6, 49sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  A
)  e.  RR )
5150, 39remulcld 9072 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  A )  x.  ( log `  A ) )  e.  RR )
5248, 51readdcld 9071 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )  e.  RR )
5345, 52syl5eqel 2488 . . . . . 6  |-  ( ph  ->  C  e.  RR )
5453, 4remulcld 9072 . . . . 5  |-  ( ph  ->  ( C  x.  X
)  e.  RR )
5534, 54readdcld 9071 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) )  e.  RR )
5613, 28remulcld 9072 . . . . . . 7  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  e.  RR )
57 fzfid 11267 . . . . . . . 8  |-  ( ph  ->  ( 1 ... ( |_ `  X ) )  e.  Fin )
5810simp2d 970 . . . . . . . . . . . 12  |-  ( ph  ->  X  <_  Y )
59 flword2 11175 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  X  <_  Y )  ->  ( |_ `  Y )  e.  ( ZZ>= `  ( |_ `  X ) ) )
604, 11, 58, 59syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( |_ `  Y
)  e.  ( ZZ>= `  ( |_ `  X ) ) )
61 fzss2 11048 . . . . . . . . . . 11  |-  ( ( |_ `  Y )  e.  ( ZZ>= `  ( |_ `  X ) )  ->  ( 1 ... ( |_ `  X
) )  C_  (
1 ... ( |_ `  Y ) ) )
6260, 61syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... ( |_ `  X ) ) 
C_  ( 1 ... ( |_ `  Y
) ) )
6362sselda 3308 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  n  e.  ( 1 ... ( |_ `  Y ) ) )
64 elfznn 11036 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  Y
) )  ->  n  e.  NN )
6564adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  n  e.  NN )
66 vmacl 20854 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6765, 66syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (Λ `  n
)  e.  RR )
68 nndivre 9991 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  n  e.  NN )  ->  ( X  /  n
)  e.  RR )
694, 64, 68syl2an 464 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( X  /  n )  e.  RR )
70 chpcl 20860 . . . . . . . . . . 11  |-  ( ( X  /  n )  e.  RR  ->  (ψ `  ( X  /  n
) )  e.  RR )
7169, 70syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( X  /  n ) )  e.  RR )
7267, 71remulcld 9072 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  e.  RR )
7363, 72syldan 457 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  e.  RR )
7457, 73fsumrecl 12483 . . . . . . 7  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  RR )
7556, 74readdcld 9071 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  e.  RR )
76 remulcl 9031 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( log `  X )  e.  RR )  -> 
( 2  x.  ( log `  X ) )  e.  RR )
7730, 28, 76sylancr 645 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( log `  X ) )  e.  RR )
7877, 36resubcld 9421 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  -  B
)  e.  RR )
7978, 4remulcld 9072 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  e.  RR )
805, 27rpmulcld 10620 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  X
)  e.  RR+ )
8180relogcld 20471 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( A  x.  X )
)  e.  RR )
82 remulcl 9031 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( log `  ( A  x.  X ) )  e.  RR )  -> 
( 2  x.  ( log `  ( A  x.  X ) ) )  e.  RR )
8330, 81, 82sylancr 645 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  e.  RR )
8436, 83readdcld 9071 . . . . . . 7  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  e.  RR )
8584, 11remulcld 9072 . . . . . 6  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  e.  RR )
8615, 28remulcld 9072 . . . . . . 7  |-  ( ph  ->  ( (ψ `  X
)  x.  ( log `  X ) )  e.  RR )
8786, 74readdcld 9071 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  e.  RR )
8818, 4, 11, 26, 58ltletrd 9186 . . . . . . . . . . 11  |-  ( ph  ->  0  <  Y )
8911, 88elrpd 10602 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  RR+ )
9089relogcld 20471 . . . . . . . . 9  |-  ( ph  ->  ( log `  Y
)  e.  RR )
9113, 90remulcld 9072 . . . . . . . 8  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  Y ) )  e.  RR )
92 fzfid 11267 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... ( |_ `  Y ) )  e.  Fin )
93 nndivre 9991 . . . . . . . . . . . 12  |-  ( ( Y  e.  RR  /\  n  e.  NN )  ->  ( Y  /  n
)  e.  RR )
9411, 64, 93syl2an 464 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( Y  /  n )  e.  RR )
95 chpcl 20860 . . . . . . . . . . 11  |-  ( ( Y  /  n )  e.  RR  ->  (ψ `  ( Y  /  n
) )  e.  RR )
9694, 95syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( Y  /  n ) )  e.  RR )
9767, 96remulcld 9072 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) )  e.  RR )
9892, 97fsumrecl 12483 . . . . . . . 8  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) )  e.  RR )
9991, 98readdcld 9071 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  e.  RR )
100 chpge0 20862 . . . . . . . . . 10  |-  ( Y  e.  RR  ->  0  <_  (ψ `  Y )
)
10111, 100syl 16 . . . . . . . . 9  |-  ( ph  ->  0  <_  (ψ `  Y
) )
10227, 89logled 20475 . . . . . . . . . 10  |-  ( ph  ->  ( X  <_  Y  <->  ( log `  X )  <_  ( log `  Y
) ) )
10358, 102mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( log `  X
)  <_  ( log `  Y ) )
10428, 90, 13, 101, 103lemul2ad 9907 . . . . . . . 8  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  <_ 
( (ψ `  Y
)  x.  ( log `  Y ) ) )
10592, 72fsumrecl 12483 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  RR )
106 vmage0 20857 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
10765, 106syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  (Λ `  n ) )
108 chpge0 20862 . . . . . . . . . . . 12  |-  ( ( X  /  n )  e.  RR  ->  0  <_  (ψ `  ( X  /  n ) ) )
10969, 108syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  (ψ `  ( X  /  n
) ) )
11067, 71, 107, 109mulge0d 9559 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
11192, 72, 110, 62fsumless 12530 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )
1124adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  X  e.  RR )
11311adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  Y  e.  RR )
11465nnrpd 10603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  n  e.  RR+ )
11558adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  X  <_  Y )
116112, 113, 114, 115lediv1dd 10658 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( X  /  n )  <_  ( Y  /  n ) )
117 chpwordi 20893 . . . . . . . . . . . 12  |-  ( ( ( X  /  n
)  e.  RR  /\  ( Y  /  n
)  e.  RR  /\  ( X  /  n
)  <_  ( Y  /  n ) )  -> 
(ψ `  ( X  /  n ) )  <_ 
(ψ `  ( Y  /  n ) ) )
11869, 94, 116, 117syl3anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( X  /  n ) )  <_  (ψ `  ( Y  /  n ) ) )
11971, 96, 67, 107, 118lemul2ad 9907 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  <_ 
( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
12092, 72, 97, 119fsumle 12533 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
12174, 105, 98, 111, 120letrd 9183 . . . . . . . 8  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
12256, 74, 91, 98, 104, 121le2addd 9600 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  <_  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) ) )
12399, 89rerpdivcld 10631 . . . . . . . . 9  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  e.  RR )
124 remulcl 9031 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( log `  Y )  e.  RR )  -> 
( 2  x.  ( log `  Y ) )  e.  RR )
12530, 90, 124sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( log `  Y ) )  e.  RR )
12636, 125readdcld 9071 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  Y ) ) )  e.  RR )
127123, 125resubcld 9421 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  e.  RR )
128127recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  e.  CC )
129128abscld 12193 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  e.  RR )
130127leabsd 12172 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  <_  ( abs `  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) ) )
13120, 4, 25ltled 9177 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  X )
13220, 4, 11, 131, 58letrd 9183 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  Y )
133 elicopnf 10956 . . . . . . . . . . . . . 14  |-  ( 1  e.  RR  ->  ( Y  e.  ( 1 [,)  +oo )  <->  ( Y  e.  RR  /\  1  <_  Y ) ) )
13419, 133ax-mp 8 . . . . . . . . . . . . 13  |-  ( Y  e.  ( 1 [,) 
+oo )  <->  ( Y  e.  RR  /\  1  <_  Y ) )
13511, 132, 134sylanbrc 646 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  ( 1 [,)  +oo ) )
136 chpdifbnd.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. z  e.  ( 1 [,)  +oo )
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B
)
137 fveq2 5687 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  (ψ `  z )  =  (ψ `  Y ) )
138 fveq2 5687 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  ( log `  z )  =  ( log `  Y
) )
139137, 138oveq12d 6058 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  Y  ->  (
(ψ `  z )  x.  ( log `  z
) )  =  ( (ψ `  Y )  x.  ( log `  Y
) ) )
140 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (Λ `  m )  =  (Λ `  n ) )
141 oveq2 6048 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  (
z  /  m )  =  ( z  /  n ) )
142141fveq2d 5691 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (ψ `  ( z  /  m
) )  =  (ψ `  ( z  /  n
) ) )
143140, 142oveq12d 6058 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  n  ->  (
(Λ `  m )  x.  (ψ `  ( z  /  m ) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) ) )
144143cbvsumv 12445 . . . . . . . . . . . . . . . . . . 19  |-  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  n )  x.  (ψ `  ( z  /  n ) ) )
145 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  Y  ->  ( |_ `  z )  =  ( |_ `  Y
) )
146145oveq2d 6056 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  Y  ->  (
1 ... ( |_ `  z ) )  =  ( 1 ... ( |_ `  Y ) ) )
147 simpl 444 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  z  =  Y )
148147oveq1d 6055 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( z  /  n )  =  ( Y  /  n ) )
149148fveq2d 5691 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  (
z  /  n ) )  =  (ψ `  ( Y  /  n
) ) )
150149oveq2d 6056 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
151146, 150sumeq12rdv 12456 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  sum_ n  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
152144, 151syl5eq 2448 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  Y  ->  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
153139, 152oveq12d 6058 . . . . . . . . . . . . . . . . 17  |-  ( z  =  Y  ->  (
( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  =  ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) ) )
154 id 20 . . . . . . . . . . . . . . . . 17  |-  ( z  =  Y  ->  z  =  Y )
155153, 154oveq12d 6058 . . . . . . . . . . . . . . . 16  |-  ( z  =  Y  ->  (
( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  =  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y ) )
156138oveq2d 6056 . . . . . . . . . . . . . . . 16  |-  ( z  =  Y  ->  (
2  x.  ( log `  z ) )  =  ( 2  x.  ( log `  Y ) ) )
157155, 156oveq12d 6058 . . . . . . . . . . . . . . 15  |-  ( z  =  Y  ->  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) )  =  ( ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )
158157fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( z  =  Y  ->  ( abs `  ( ( ( ( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  /  z )  -  ( 2  x.  ( log `  z
) ) ) )  =  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) ) )
159158breq1d 4182 . . . . . . . . . . . . 13  |-  ( z  =  Y  ->  (
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  <->  ( abs `  ( ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
) )
160159rspcv 3008 . . . . . . . . . . . 12  |-  ( Y  e.  ( 1 [,) 
+oo )  ->  ( A. z  e.  (
1 [,)  +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
) )
161135, 136, 160sylc 58 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
)
162127, 129, 36, 130, 161letrd 9183 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  <_  B )
163123, 125, 36lesubaddd 9579 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( (ψ `  Y
)  x.  ( log `  Y ) )  + 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y
) ) )  <_  B 
<->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  Y ) ) ) ) )
164162, 163mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  Y ) ) ) )
16510simp3d 971 . . . . . . . . . . . 12  |-  ( ph  ->  Y  <_  ( A  x.  X ) )
16689, 80logled 20475 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y  <_  ( A  x.  X )  <->  ( log `  Y )  <_  ( log `  ( A  x.  X )
) ) )
167165, 166mpbid 202 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  Y
)  <_  ( log `  ( A  x.  X
) ) )
168 2pos 10038 . . . . . . . . . . . . . 14  |-  0  <  2
16930, 168pm3.2i 442 . . . . . . . . . . . . 13  |-  ( 2  e.  RR  /\  0  <  2 )
170169a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
171 lemul2 9819 . . . . . . . . . . . 12  |-  ( ( ( log `  Y
)  e.  RR  /\  ( log `  ( A  x.  X ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( log `  Y )  <_  ( log `  ( A  x.  X ) )  <->  ( 2  x.  ( log `  Y
) )  <_  (
2  x.  ( log `  ( A  x.  X
) ) ) ) )
17290, 81, 170, 171syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( ( log `  Y
)  <_  ( log `  ( A  x.  X
) )  <->  ( 2  x.  ( log `  Y
) )  <_  (
2  x.  ( log `  ( A  x.  X
) ) ) ) )
173167, 172mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( log `  Y ) )  <_  ( 2  x.  ( log `  ( A  x.  X )
) ) )
174125, 83, 36, 173leadd2dd 9597 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  Y ) ) )  <_  ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) ) )
175123, 126, 84, 164, 174letrd 9183 . . . . . . . 8  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) ) )
17699, 84, 89ledivmul2d 10654 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  <-> 
( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) ) )
177175, 176mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) )
17875, 99, 85, 122, 177letrd 9183 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) )
179 elicopnf 10956 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  ( X  e.  ( 1 [,)  +oo )  <->  ( X  e.  RR  /\  1  <_  X ) ) )
18019, 179ax-mp 8 . . . . . . . . . . 11  |-  ( X  e.  ( 1 [,) 
+oo )  <->  ( X  e.  RR  /\  1  <_  X ) )
1814, 131, 180sylanbrc 646 . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( 1 [,)  +oo ) )
182 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  (ψ `  z )  =  (ψ `  X ) )
183 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  ( log `  z )  =  ( log `  X
) )
184182, 183oveq12d 6058 . . . . . . . . . . . . . . . 16  |-  ( z  =  X  ->  (
(ψ `  z )  x.  ( log `  z
) )  =  ( (ψ `  X )  x.  ( log `  X
) ) )
185 fveq2 5687 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  X  ->  ( |_ `  z )  =  ( |_ `  X
) )
186185oveq2d 6056 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  X  ->  (
1 ... ( |_ `  z ) )  =  ( 1 ... ( |_ `  X ) ) )
187 simpl 444 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  z  =  X )
188187oveq1d 6055 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( z  /  n )  =  ( X  /  n ) )
189188fveq2d 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  (ψ `  (
z  /  n ) )  =  (ψ `  ( X  /  n
) ) )
190189oveq2d 6056 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )
191186, 190sumeq12rdv 12456 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  sum_ n  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
192144, 191syl5eq 2448 . . . . . . . . . . . . . . . 16  |-  ( z  =  X  ->  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
193184, 192oveq12d 6058 . . . . . . . . . . . . . . 15  |-  ( z  =  X  ->  (
( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  =  ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) ) )
194 id 20 . . . . . . . . . . . . . . 15  |-  ( z  =  X  ->  z  =  X )
195193, 194oveq12d 6058 . . . . . . . . . . . . . 14  |-  ( z  =  X  ->  (
( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  =  ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X ) )
196183oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( z  =  X  ->  (
2  x.  ( log `  z ) )  =  ( 2  x.  ( log `  X ) ) )
197195, 196oveq12d 6058 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) )  =  ( ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )
198197fveq2d 5691 . . . . . . . . . . . 12  |-  ( z  =  X  ->  ( abs `  ( ( ( ( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  /  z )  -  ( 2  x.  ( log `  z
) ) ) )  =  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) ) )
199198breq1d 4182 . . . . . . . . . . 11  |-  ( z  =  X  ->  (
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  <->  ( abs `  ( ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
) )
200199rspcv 3008 . . . . . . . . . 10  |-  ( X  e.  ( 1 [,) 
+oo )  ->  ( A. z  e.  (
1 [,)  +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  ->  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
) )
201181, 136, 200sylc 58 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
)
20287, 27rerpdivcld 10631 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  e.  RR )
203202, 77, 36absdifled 12192 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B  <->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X )  /\  ( ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  <_ 
( ( 2  x.  ( log `  X
) )  +  B
) ) ) )
204201, 203mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X )  /\  ( ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  <_ 
( ( 2  x.  ( log `  X
) )  +  B
) ) )
205204simpld 446 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X ) )
20678, 87, 27lemuldivd 10649 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  ( log `  X ) )  -  B )  x.  X
)  <_  ( (
(ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  <-> 
( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X ) ) )
207205, 206mpbird 224 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  <_  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )
20875, 79, 85, 87, 178, 207le2subd 9601 . . . . 5  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  <_  ( (
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  x.  Y )  -  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) ) )
20956recnd 9070 . . . . . . 7  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  e.  CC )
21086recnd 9070 . . . . . . 7  |-  ( ph  ->  ( (ψ `  X
)  x.  ( log `  X ) )  e.  CC )
21174recnd 9070 . . . . . . 7  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  CC )
212209, 210, 211pnpcan2d 9405 . . . . . 6  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  =  ( ( (ψ `  Y )  x.  ( log `  X
) )  -  (
(ψ `  X )  x.  ( log `  X
) ) ) )
21313recnd 9070 . . . . . . 7  |-  ( ph  ->  (ψ `  Y )  e.  CC )
21415recnd 9070 . . . . . . 7  |-  ( ph  ->  (ψ `  X )  e.  CC )
21528recnd 9070 . . . . . . 7  |-  ( ph  ->  ( log `  X
)  e.  CC )
216213, 214, 215subdird 9446 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  =  ( ( (ψ `  Y
)  x.  ( log `  X ) )  -  ( (ψ `  X )  x.  ( log `  X
) ) ) )
217212, 216eqtr4d 2439 . . . . 5  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  =  ( ( (ψ `  Y )  -  (ψ `  X )
)  x.  ( log `  X ) ) )
21877, 11remulcld 9072 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  Y
)  e.  RR )
219218recnd 9070 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  Y
)  e.  CC )
22036, 41readdcld 9071 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  A ) ) )  e.  RR )
221220, 11remulcld 9072 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  e.  RR )
222221recnd 9070 . . . . . . 7  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  e.  CC )
22377, 4remulcld 9072 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  X
)  e.  RR )
224223recnd 9070 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  X
)  e.  CC )
22536, 4remulcld 9072 . . . . . . . . 9  |-  ( ph  ->  ( B  x.  X
)  e.  RR )
226225recnd 9070 . . . . . . . 8  |-  ( ph  ->  ( B  x.  X
)  e.  CC )
227226negcld 9354 . . . . . . 7  |-  ( ph  -> 
-u ( B  x.  X )  e.  CC )
228219, 222, 224, 227addsub4d 9414 . . . . . 6  |-  ( ph  ->  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  +  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y ) )  -  ( ( ( 2  x.  ( log `  X ) )  x.  X )  +  -u ( B  x.  X
) ) )  =  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  (
( 2  x.  ( log `  X ) )  x.  X ) )  +  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
) ) )
2295, 27relogmuld 20473 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( log `  ( A  x.  X )
)  =  ( ( log `  A )  +  ( log `  X
) ) )
23039recnd 9070 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( log `  A
)  e.  CC )
231230, 215addcomd 9224 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( log `  A
)  +  ( log `  X ) )  =  ( ( log `  X
)  +  ( log `  A ) ) )
232229, 231eqtrd 2436 . . . . . . . . . . . . 13  |-  ( ph  ->  ( log `  ( A  x.  X )
)  =  ( ( log `  X )  +  ( log `  A
) ) )
233232oveq2d 6056 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  =  ( 2  x.  ( ( log `  X
)  +  ( log `  A ) ) ) )
234 2cn 10026 . . . . . . . . . . . . . 14  |-  2  e.  CC
235234a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  CC )
236235, 215, 230adddid 9068 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  (
( log `  X
)  +  ( log `  A ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) )
237233, 236eqtrd 2436 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) )
238237oveq2d 6056 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  =  ( B  +  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) ) )
23936recnd 9070 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
24077recnd 9070 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  X ) )  e.  CC )
24141recnd 9070 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  A ) )  e.  CC )
242239, 240, 241add12d 9243 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  ( ( 2  x.  ( log `  X ) )  +  ( 2  x.  ( log `  A
) ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) ) )
243238, 242eqtrd 2436 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) ) )
244243oveq1d 6055 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X ) )  +  ( B  +  ( 2  x.  ( log `  A ) ) ) )  x.  Y ) )
245220recnd 9070 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  A ) ) )  e.  CC )
24611recnd 9070 . . . . . . . . 9  |-  ( ph  ->  Y  e.  CC )
247240, 245, 246adddird 9069 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X
) )  x.  Y
)  +  ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y ) ) )
248244, 247eqtrd 2436 . . . . . . 7  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  +  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y ) ) )
2494recnd 9070 . . . . . . . . 9  |-  ( ph  ->  X  e.  CC )
250240, 239, 249subdird 9446 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  -  ( B  x.  X )
) )
251224, 226negsubd 9373 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  x.  X
)  +  -u ( B  x.  X )
)  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  -  ( B  x.  X
) ) )
252250, 251eqtr4d 2439 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  +  -u ( B  x.  X
) ) )
253248, 252oveq12d 6058 . . . . . 6  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y )  -  (
( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) )  =  ( ( ( ( 2  x.  ( log `  X
) )  x.  Y
)  +  ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y ) )  -  ( ( ( 2  x.  ( log `  X
) )  x.  X
)  +  -u ( B  x.  X )
) ) )
25431recnd 9070 . . . . . . . . 9  |-  ( ph  ->  ( Y  -  X
)  e.  CC )
255235, 254, 215mul32d 9232 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  =  ( ( 2  x.  ( log `  X
) )  x.  ( Y  -  X )
) )
256240, 246, 249subdid 9445 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  ( Y  -  X )
)  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  ( ( 2  x.  ( log `  X
) )  x.  X
) ) )
257255, 256eqtrd 2436 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  (
( 2  x.  ( log `  X ) )  x.  X ) ) )
25836, 11remulcld 9072 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  Y
)  e.  RR )
259258recnd 9070 . . . . . . . . . 10  |-  ( ph  ->  ( B  x.  Y
)  e.  CC )
26042recnd 9070 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  e.  CC )
261259, 226, 260add32d 9244 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  x.  Y )  +  ( B  x.  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  x.  Y )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) )  +  ( B  x.  X ) ) )
262239, 246, 249adddid 9068 . . . . . . . . . 10  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  =  ( ( B  x.  Y )  +  ( B  x.  X ) ) )
263262oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  x.  Y )  +  ( B  x.  X ) )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) )
264239, 241, 246adddird 9069 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  =  ( ( B  x.  Y )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) )
265264oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  +  ( B  x.  X ) )  =  ( ( ( B  x.  Y
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  +  ( B  x.  X
) ) )
266261, 263, 2653eqtr4d 2446 . . . . . . . 8  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  +  ( B  x.  X ) ) )
267222, 226subnegd 9374 . . . . . . . 8  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
)  =  ( ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  +  ( B  x.  X
) ) )
268266, 267eqtr4d 2439 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
) )
269257, 268oveq12d 6058 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  =  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  ( ( 2  x.  ( log `  X
) )  x.  X
) )  +  ( ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  -  -u ( B  x.  X ) ) ) )
270228, 253, 2693eqtr4d 2446 . . . . 5  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y )  -  (
( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) )  =  ( ( ( 2  x.  ( Y  -  X )
)  x.  ( log `  X ) )  +  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) ) )
271208, 217, 2703brtr3d 4201 . . . 4  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( ( B  x.  ( Y  +  X ) )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) ) )
27248, 4remulcld 9072 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  x.  X
)  e.  RR )
27351, 4remulcld 9072 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  e.  RR )
27411, 7, 4, 165leadd1dd 9596 . . . . . . . . . 10  |-  ( ph  ->  ( Y  +  X
)  <_  ( ( A  x.  X )  +  X ) )
2756recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
27620recnd 9070 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
277275, 276, 249adddird 9069 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  =  ( ( A  x.  X )  +  ( 1  x.  X ) ) )
278249mulid2d 9062 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  x.  X
)  =  X )
279278oveq2d 6056 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  X )  +  ( 1  x.  X ) )  =  ( ( A  x.  X )  +  X ) )
280277, 279eqtrd 2436 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  =  ( ( A  x.  X )  +  X ) )
281274, 280breqtrrd 4198 . . . . . . . . 9  |-  ( ph  ->  ( Y  +  X
)  <_  ( ( A  +  1 )  x.  X ) )
28247, 4remulcld 9072 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  e.  RR )
28337, 282, 35lemul2d 10644 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  +  X )  <_  (
( A  +  1 )  x.  X )  <-> 
( B  x.  ( Y  +  X )
)  <_  ( B  x.  ( ( A  + 
1 )  x.  X
) ) ) )
284281, 283mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  <_  ( B  x.  ( ( A  + 
1 )  x.  X
) ) )
28547recnd 9070 . . . . . . . . 9  |-  ( ph  ->  ( A  +  1 )  e.  CC )
286239, 285, 249mulassd 9067 . . . . . . . 8  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  x.  X
)  =  ( B  x.  ( ( A  +  1 )  x.  X ) ) )
287284, 286breqtrrd 4198 . . . . . . 7  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  <_  ( ( B  x.  ( A  +  1 ) )  x.  X ) )
28830a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  RR )
28917, 30, 168ltleii 9152 . . . . . . . . . . 11  |-  0  <_  2
290289a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  <_  2 )
291 log1 20433 . . . . . . . . . . 11  |-  ( log `  1 )  =  0
292 chpdifbnd.1 . . . . . . . . . . . 12  |-  ( ph  ->  1  <_  A )
293 1rp 10572 . . . . . . . . . . . . 13  |-  1  e.  RR+
294 logleb 20451 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR+  /\  A  e.  RR+ )  ->  (
1  <_  A  <->  ( log `  1 )  <_  ( log `  A ) ) )
295293, 5, 294sylancr 645 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  <_  A  <->  ( log `  1 )  <_  ( log `  A
) ) )
296292, 295mpbid 202 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  1
)  <_  ( log `  A ) )
297291, 296syl5eqbrr 4206 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( log `  A ) )
298288, 39, 290, 297mulge0d 9559 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( 2  x.  ( log `  A
) ) )
29911, 7, 41, 298, 165lemul2ad 9907 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  <_  ( (
2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
30050recnd 9070 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  A
)  e.  CC )
301300, 230, 249mulassd 9067 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  =  ( ( 2  x.  A )  x.  ( ( log `  A )  x.  X
) ) )
302235, 275, 230, 249mul4d 9234 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  A )  x.  (
( log `  A
)  x.  X ) )  =  ( ( 2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
303301, 302eqtrd 2436 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  =  ( ( 2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
304299, 303breqtrrd 4198 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  <_  ( (
( 2  x.  A
)  x.  ( log `  A ) )  x.  X ) )
30538, 42, 272, 273, 287, 304le2addd 9600 . . . . . 6  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  <_  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
30645oveq1i 6050 . . . . . . 7  |-  ( C  x.  X )  =  ( ( ( B  x.  ( A  + 
1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )  x.  X )
30748recnd 9070 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( A  +  1 ) )  e.  CC )
30851recnd 9070 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  A )  x.  ( log `  A ) )  e.  CC )
309307, 308, 249adddird 9069 . . . . . . 7  |-  ( ph  ->  ( ( ( B  x.  ( A  + 
1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )  x.  X )  =  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
310306, 309syl5eq 2448 . . . . . 6  |-  ( ph  ->  ( C  x.  X
)  =  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
311305, 310breqtrrd 4198 . . . . 5  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  <_  ( C  x.  X ) )
31243, 54, 34, 311leadd2dd 9597 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  <_  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) ) )
31329, 44, 55, 271, 312letrd 9183 . . 3  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( C  x.  X ) ) )
31433recnd 9070 . . . . 5  |-  ( ph  ->  ( 2  x.  ( Y  -  X )
)  e.  CC )
3154, 25rplogcld 20477 . . . . . . . 8  |-  ( ph  ->  ( log `  X
)  e.  RR+ )
3164, 315rerpdivcld 10631 . . . . . . 7  |-  ( ph  ->  ( X  /  ( log `  X ) )  e.  RR )
31753, 316remulcld 9072 . . . . . 6  |-  ( ph  ->  ( C  x.  ( X  /  ( log `  X
) ) )  e.  RR )
318317recnd 9070 . . . . 5  |-  ( ph  ->  ( C  x.  ( X  /  ( log `  X
) ) )  e.  CC )
319314, 318, 215adddird 9069 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) )  =  ( ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( ( C  x.  ( X  / 
( log `  X
) ) )  x.  ( log `  X
) ) ) )
32053recnd 9070 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
321316recnd 9070 . . . . . . 7  |-  ( ph  ->  ( X  /  ( log `  X ) )  e.  CC )
322320, 321, 215mulassd 9067 . . . . . 6  |-  ( ph  ->  ( ( C  x.  ( X  /  ( log `  X ) ) )  x.  ( log `  X ) )  =  ( C  x.  (
( X  /  ( log `  X ) )  x.  ( log `  X
) ) ) )
323315rpne0d 10609 . . . . . . . 8  |-  ( ph  ->  ( log `  X
)  =/=  0 )
324249, 215, 323divcan1d 9747 . . . . . . 7  |-  ( ph  ->  ( ( X  / 
( log `  X
) )  x.  ( log `  X ) )  =  X )
325324oveq2d 6056 . . . . . 6  |-  ( ph  ->  ( C  x.  (
( X  /  ( log `  X ) )  x.  ( log `  X
) ) )  =  ( C  x.  X
) )
326322, 325eqtrd 2436 . . . . 5  |-  ( ph  ->  ( ( C  x.  ( X  /  ( log `  X ) ) )  x.  ( log `  X ) )  =  ( C  x.  X
) )
327326oveq2d 6056 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( C  x.  ( X  /  ( log `  X
) ) )  x.  ( log `  X
) ) )  =  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) ) )
328319, 327eqtrd 2436 . . 3  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) )  =  ( ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( C  x.  X ) ) )
329313, 328breqtrrd 4198 . 2  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) ) )
33033, 317readdcld 9071 . . 3  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  e.  RR )
33116, 330, 315lemul1d 10643 . 2  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  <-> 
( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) ) ) )
332329, 331mpbird 224 1  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666    C_ wss 3280   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    < clt 9076    <_ cle 9077    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   ZZ>=cuz 10444   RR+crp 10568   (,)cioo 10872   [,)cico 10874   [,]cicc 10875   ...cfz 10999   |_cfl 11156   abscabs 11994   sum_csu 12434   logclog 20405  Λcvma 20827  ψcchp 20828
This theorem is referenced by:  chpdifbndlem2  21201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-vma 20833  df-chp 20834
  Copyright terms: Public domain W3C validator