MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdifbndlem1 Structured version   Unicode version

Theorem chpdifbndlem1 22687
Description: Lemma for chpdifbnd 22689. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
chpdifbnd.a  |-  ( ph  ->  A  e.  RR+ )
chpdifbnd.1  |-  ( ph  ->  1  <_  A )
chpdifbnd.b  |-  ( ph  ->  B  e.  RR+ )
chpdifbnd.2  |-  ( ph  ->  A. z  e.  ( 1 [,) +oo )
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B
)
chpdifbnd.c  |-  C  =  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )
chpdifbnd.x  |-  ( ph  ->  X  e.  ( 1 (,) +oo ) )
chpdifbnd.y  |-  ( ph  ->  Y  e.  ( X [,] ( A  x.  X ) ) )
Assertion
Ref Expression
chpdifbndlem1  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) ) )
Distinct variable groups:    z, m, C    z, X    z, Y    z, B
Allowed substitution hints:    ph( z, m)    A( z, m)    B( m)    X( m)    Y( m)

Proof of Theorem chpdifbndlem1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 chpdifbnd.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( X [,] ( A  x.  X ) ) )
2 ioossre 11345 . . . . . . . . . . 11  |-  ( 1 (,) +oo )  C_  RR
3 chpdifbnd.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( 1 (,) +oo ) )
42, 3sseldi 3342 . . . . . . . . . 10  |-  ( ph  ->  X  e.  RR )
5 chpdifbnd.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
65rpred 11015 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
76, 4remulcld 9402 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  X
)  e.  RR )
8 elicc2 11348 . . . . . . . . . 10  |-  ( ( X  e.  RR  /\  ( A  x.  X
)  e.  RR )  ->  ( Y  e.  ( X [,] ( A  x.  X )
)  <->  ( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X )
) ) )
94, 7, 8syl2anc 654 . . . . . . . . 9  |-  ( ph  ->  ( Y  e.  ( X [,] ( A  x.  X ) )  <-> 
( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X ) ) ) )
101, 9mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X ) ) )
1110simp1d 993 . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
12 chpcl 22347 . . . . . . 7  |-  ( Y  e.  RR  ->  (ψ `  Y )  e.  RR )
1311, 12syl 16 . . . . . 6  |-  ( ph  ->  (ψ `  Y )  e.  RR )
14 chpcl 22347 . . . . . . 7  |-  ( X  e.  RR  ->  (ψ `  X )  e.  RR )
154, 14syl 16 . . . . . 6  |-  ( ph  ->  (ψ `  X )  e.  RR )
1613, 15resubcld 9764 . . . . 5  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  e.  RR )
17 0red 9375 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
18 1re 9373 . . . . . . . . 9  |-  1  e.  RR
1918a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
20 0lt1 9850 . . . . . . . . 9  |-  0  <  1
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
22 eliooord 11343 . . . . . . . . . 10  |-  ( X  e.  ( 1 (,) +oo )  ->  ( 1  <  X  /\  X  < +oo ) )
233, 22syl 16 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  X  /\  X  < +oo )
)
2423simpld 456 . . . . . . . 8  |-  ( ph  ->  1  <  X )
2517, 19, 4, 21, 24lttrd 9520 . . . . . . 7  |-  ( ph  ->  0  <  X )
264, 25elrpd 11013 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
2726relogcld 21957 . . . . 5  |-  ( ph  ->  ( log `  X
)  e.  RR )
2816, 27remulcld 9402 . . . 4  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  e.  RR )
29 2re 10379 . . . . . . 7  |-  2  e.  RR
3011, 4resubcld 9764 . . . . . . 7  |-  ( ph  ->  ( Y  -  X
)  e.  RR )
31 remulcl 9355 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( Y  -  X
)  e.  RR )  ->  ( 2  x.  ( Y  -  X
) )  e.  RR )
3229, 30, 31sylancr 656 . . . . . 6  |-  ( ph  ->  ( 2  x.  ( Y  -  X )
)  e.  RR )
3332, 27remulcld 9402 . . . . 5  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  e.  RR )
34 chpdifbnd.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR+ )
3534rpred 11015 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
3611, 4readdcld 9401 . . . . . . 7  |-  ( ph  ->  ( Y  +  X
)  e.  RR )
3735, 36remulcld 9402 . . . . . 6  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  e.  RR )
385relogcld 21957 . . . . . . . 8  |-  ( ph  ->  ( log `  A
)  e.  RR )
39 remulcl 9355 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( log `  A )  e.  RR )  -> 
( 2  x.  ( log `  A ) )  e.  RR )
4029, 38, 39sylancr 656 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( log `  A ) )  e.  RR )
4140, 11remulcld 9402 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  e.  RR )
4237, 41readdcld 9401 . . . . 5  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  e.  RR )
4333, 42readdcld 9401 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  e.  RR )
44 chpdifbnd.c . . . . . . 7  |-  C  =  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )
45 peano2re 9530 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
466, 45syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A  +  1 )  e.  RR )
4735, 46remulcld 9402 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( A  +  1 ) )  e.  RR )
48 remulcl 9355 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
4929, 6, 48sylancr 656 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  A
)  e.  RR )
5049, 38remulcld 9402 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  A )  x.  ( log `  A ) )  e.  RR )
5147, 50readdcld 9401 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )  e.  RR )
5244, 51syl5eqel 2517 . . . . . 6  |-  ( ph  ->  C  e.  RR )
5352, 4remulcld 9402 . . . . 5  |-  ( ph  ->  ( C  x.  X
)  e.  RR )
5433, 53readdcld 9401 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) )  e.  RR )
5513, 27remulcld 9402 . . . . . . 7  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  e.  RR )
56 fzfid 11779 . . . . . . . 8  |-  ( ph  ->  ( 1 ... ( |_ `  X ) )  e.  Fin )
5710simp2d 994 . . . . . . . . . . . 12  |-  ( ph  ->  X  <_  Y )
58 flword2 11645 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  X  <_  Y )  ->  ( |_ `  Y )  e.  ( ZZ>= `  ( |_ `  X ) ) )
594, 11, 57, 58syl3anc 1211 . . . . . . . . . . 11  |-  ( ph  ->  ( |_ `  Y
)  e.  ( ZZ>= `  ( |_ `  X ) ) )
60 fzss2 11485 . . . . . . . . . . 11  |-  ( ( |_ `  Y )  e.  ( ZZ>= `  ( |_ `  X ) )  ->  ( 1 ... ( |_ `  X
) )  C_  (
1 ... ( |_ `  Y ) ) )
6159, 60syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... ( |_ `  X ) ) 
C_  ( 1 ... ( |_ `  Y
) ) )
6261sselda 3344 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  n  e.  ( 1 ... ( |_ `  Y ) ) )
63 elfznn 11465 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  Y
) )  ->  n  e.  NN )
6463adantl 463 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  n  e.  NN )
65 vmacl 22341 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6664, 65syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (Λ `  n
)  e.  RR )
67 nndivre 10345 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  n  e.  NN )  ->  ( X  /  n
)  e.  RR )
684, 63, 67syl2an 474 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( X  /  n )  e.  RR )
69 chpcl 22347 . . . . . . . . . . 11  |-  ( ( X  /  n )  e.  RR  ->  (ψ `  ( X  /  n
) )  e.  RR )
7068, 69syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( X  /  n ) )  e.  RR )
7166, 70remulcld 9402 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  e.  RR )
7262, 71syldan 467 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  e.  RR )
7356, 72fsumrecl 13195 . . . . . . 7  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  RR )
7455, 73readdcld 9401 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  e.  RR )
75 remulcl 9355 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( log `  X )  e.  RR )  -> 
( 2  x.  ( log `  X ) )  e.  RR )
7629, 27, 75sylancr 656 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( log `  X ) )  e.  RR )
7776, 35resubcld 9764 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  -  B
)  e.  RR )
7877, 4remulcld 9402 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  e.  RR )
795, 26rpmulcld 11031 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  X
)  e.  RR+ )
8079relogcld 21957 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( A  x.  X )
)  e.  RR )
81 remulcl 9355 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( log `  ( A  x.  X ) )  e.  RR )  -> 
( 2  x.  ( log `  ( A  x.  X ) ) )  e.  RR )
8229, 80, 81sylancr 656 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  e.  RR )
8335, 82readdcld 9401 . . . . . . 7  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  e.  RR )
8483, 11remulcld 9402 . . . . . 6  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  e.  RR )
8515, 27remulcld 9402 . . . . . . 7  |-  ( ph  ->  ( (ψ `  X
)  x.  ( log `  X ) )  e.  RR )
8685, 73readdcld 9401 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  e.  RR )
8717, 4, 11, 25, 57ltletrd 9519 . . . . . . . . . . 11  |-  ( ph  ->  0  <  Y )
8811, 87elrpd 11013 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  RR+ )
8988relogcld 21957 . . . . . . . . 9  |-  ( ph  ->  ( log `  Y
)  e.  RR )
9013, 89remulcld 9402 . . . . . . . 8  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  Y ) )  e.  RR )
91 fzfid 11779 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... ( |_ `  Y ) )  e.  Fin )
92 nndivre 10345 . . . . . . . . . . . 12  |-  ( ( Y  e.  RR  /\  n  e.  NN )  ->  ( Y  /  n
)  e.  RR )
9311, 63, 92syl2an 474 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( Y  /  n )  e.  RR )
94 chpcl 22347 . . . . . . . . . . 11  |-  ( ( Y  /  n )  e.  RR  ->  (ψ `  ( Y  /  n
) )  e.  RR )
9593, 94syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( Y  /  n ) )  e.  RR )
9666, 95remulcld 9402 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) )  e.  RR )
9791, 96fsumrecl 13195 . . . . . . . 8  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) )  e.  RR )
9890, 97readdcld 9401 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  e.  RR )
99 chpge0 22349 . . . . . . . . . 10  |-  ( Y  e.  RR  ->  0  <_  (ψ `  Y )
)
10011, 99syl 16 . . . . . . . . 9  |-  ( ph  ->  0  <_  (ψ `  Y
) )
10126, 88logled 21961 . . . . . . . . . 10  |-  ( ph  ->  ( X  <_  Y  <->  ( log `  X )  <_  ( log `  Y
) ) )
10257, 101mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( log `  X
)  <_  ( log `  Y ) )
10327, 89, 13, 100, 102lemul2ad 10261 . . . . . . . 8  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  <_ 
( (ψ `  Y
)  x.  ( log `  Y ) ) )
10491, 71fsumrecl 13195 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  RR )
105 vmage0 22344 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
10664, 105syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  (Λ `  n ) )
107 chpge0 22349 . . . . . . . . . . . 12  |-  ( ( X  /  n )  e.  RR  ->  0  <_  (ψ `  ( X  /  n ) ) )
10868, 107syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  (ψ `  ( X  /  n
) ) )
10966, 70, 106, 108mulge0d 9904 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
11091, 71, 109, 61fsumless 13242 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )
1114adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  X  e.  RR )
11211adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  Y  e.  RR )
11364nnrpd 11014 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  n  e.  RR+ )
11457adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  X  <_  Y )
115111, 112, 113, 114lediv1dd 11069 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( X  /  n )  <_  ( Y  /  n ) )
116 chpwordi 22380 . . . . . . . . . . . 12  |-  ( ( ( X  /  n
)  e.  RR  /\  ( Y  /  n
)  e.  RR  /\  ( X  /  n
)  <_  ( Y  /  n ) )  -> 
(ψ `  ( X  /  n ) )  <_ 
(ψ `  ( Y  /  n ) ) )
11768, 93, 115, 116syl3anc 1211 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( X  /  n ) )  <_  (ψ `  ( Y  /  n ) ) )
11870, 95, 66, 106, 117lemul2ad 10261 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  <_ 
( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
11991, 71, 96, 118fsumle 13245 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
12073, 104, 97, 110, 119letrd 9516 . . . . . . . 8  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
12155, 73, 90, 97, 103, 120le2addd 9945 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  <_  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) ) )
12298, 88rerpdivcld 11042 . . . . . . . . 9  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  e.  RR )
123 remulcl 9355 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( log `  Y )  e.  RR )  -> 
( 2  x.  ( log `  Y ) )  e.  RR )
12429, 89, 123sylancr 656 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( log `  Y ) )  e.  RR )
12535, 124readdcld 9401 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  Y ) ) )  e.  RR )
126122, 124resubcld 9764 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  e.  RR )
127126recnd 9400 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  e.  CC )
128127abscld 12906 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  e.  RR )
129126leabsd 12885 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  <_  ( abs `  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) ) )
13019, 4, 24ltled 9510 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  X )
13119, 4, 11, 130, 57letrd 9516 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  Y )
132 elicopnf 11373 . . . . . . . . . . . . . 14  |-  ( 1  e.  RR  ->  ( Y  e.  ( 1 [,) +oo )  <->  ( Y  e.  RR  /\  1  <_  Y ) ) )
13318, 132ax-mp 5 . . . . . . . . . . . . 13  |-  ( Y  e.  ( 1 [,) +oo )  <->  ( Y  e.  RR  /\  1  <_  Y ) )
13411, 131, 133sylanbrc 657 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  ( 1 [,) +oo ) )
135 chpdifbnd.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. z  e.  ( 1 [,) +oo )
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B
)
136 fveq2 5679 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  (ψ `  z )  =  (ψ `  Y ) )
137 fveq2 5679 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  ( log `  z )  =  ( log `  Y
) )
138136, 137oveq12d 6098 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  Y  ->  (
(ψ `  z )  x.  ( log `  z
) )  =  ( (ψ `  Y )  x.  ( log `  Y
) ) )
139 fveq2 5679 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (Λ `  m )  =  (Λ `  n ) )
140 oveq2 6088 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  (
z  /  m )  =  ( z  /  n ) )
141140fveq2d 5683 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (ψ `  ( z  /  m
) )  =  (ψ `  ( z  /  n
) ) )
142139, 141oveq12d 6098 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  n  ->  (
(Λ `  m )  x.  (ψ `  ( z  /  m ) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) ) )
143142cbvsumv 13157 . . . . . . . . . . . . . . . . . . 19  |-  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  n )  x.  (ψ `  ( z  /  n ) ) )
144 fveq2 5679 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  Y  ->  ( |_ `  z )  =  ( |_ `  Y
) )
145144oveq2d 6096 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  Y  ->  (
1 ... ( |_ `  z ) )  =  ( 1 ... ( |_ `  Y ) ) )
146 simpl 454 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  z  =  Y )
147146oveq1d 6095 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( z  /  n )  =  ( Y  /  n ) )
148147fveq2d 5683 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  (
z  /  n ) )  =  (ψ `  ( Y  /  n
) ) )
149148oveq2d 6096 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
150145, 149sumeq12rdv 13168 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  sum_ n  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
151143, 150syl5eq 2477 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  Y  ->  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
152138, 151oveq12d 6098 . . . . . . . . . . . . . . . . 17  |-  ( z  =  Y  ->  (
( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  =  ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) ) )
153 id 22 . . . . . . . . . . . . . . . . 17  |-  ( z  =  Y  ->  z  =  Y )
154152, 153oveq12d 6098 . . . . . . . . . . . . . . . 16  |-  ( z  =  Y  ->  (
( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  =  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y ) )
155137oveq2d 6096 . . . . . . . . . . . . . . . 16  |-  ( z  =  Y  ->  (
2  x.  ( log `  z ) )  =  ( 2  x.  ( log `  Y ) ) )
156154, 155oveq12d 6098 . . . . . . . . . . . . . . 15  |-  ( z  =  Y  ->  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) )  =  ( ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )
157156fveq2d 5683 . . . . . . . . . . . . . 14  |-  ( z  =  Y  ->  ( abs `  ( ( ( ( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  /  z )  -  ( 2  x.  ( log `  z
) ) ) )  =  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) ) )
158157breq1d 4290 . . . . . . . . . . . . 13  |-  ( z  =  Y  ->  (
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  <->  ( abs `  ( ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
) )
159158rspcv 3058 . . . . . . . . . . . 12  |-  ( Y  e.  ( 1 [,) +oo )  ->  ( A. z  e.  ( 1 [,) +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
) )
160134, 135, 159sylc 60 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
)
161126, 128, 35, 129, 160letrd 9516 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  <_  B )
162122, 124, 35lesubaddd 9924 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( (ψ `  Y
)  x.  ( log `  Y ) )  + 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y
) ) )  <_  B 
<->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  Y ) ) ) ) )
163161, 162mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  Y ) ) ) )
16410simp3d 995 . . . . . . . . . . . 12  |-  ( ph  ->  Y  <_  ( A  x.  X ) )
16588, 79logled 21961 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y  <_  ( A  x.  X )  <->  ( log `  Y )  <_  ( log `  ( A  x.  X )
) ) )
166164, 165mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  Y
)  <_  ( log `  ( A  x.  X
) ) )
167 2pos 10401 . . . . . . . . . . . . . 14  |-  0  <  2
16829, 167pm3.2i 452 . . . . . . . . . . . . 13  |-  ( 2  e.  RR  /\  0  <  2 )
169168a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
170 lemul2 10170 . . . . . . . . . . . 12  |-  ( ( ( log `  Y
)  e.  RR  /\  ( log `  ( A  x.  X ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( log `  Y )  <_  ( log `  ( A  x.  X ) )  <->  ( 2  x.  ( log `  Y
) )  <_  (
2  x.  ( log `  ( A  x.  X
) ) ) ) )
17189, 80, 169, 170syl3anc 1211 . . . . . . . . . . 11  |-  ( ph  ->  ( ( log `  Y
)  <_  ( log `  ( A  x.  X
) )  <->  ( 2  x.  ( log `  Y
) )  <_  (
2  x.  ( log `  ( A  x.  X
) ) ) ) )
172166, 171mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( log `  Y ) )  <_  ( 2  x.  ( log `  ( A  x.  X )
) ) )
173124, 82, 35, 172leadd2dd 9942 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  Y ) ) )  <_  ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) ) )
174122, 125, 83, 163, 173letrd 9516 . . . . . . . 8  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) ) )
17598, 83, 88ledivmul2d 11065 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  <-> 
( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) ) )
176174, 175mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) )
17774, 98, 84, 121, 176letrd 9516 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) )
178 elicopnf 11373 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  ( X  e.  ( 1 [,) +oo )  <->  ( X  e.  RR  /\  1  <_  X ) ) )
17918, 178ax-mp 5 . . . . . . . . . . 11  |-  ( X  e.  ( 1 [,) +oo )  <->  ( X  e.  RR  /\  1  <_  X ) )
1804, 130, 179sylanbrc 657 . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( 1 [,) +oo ) )
181 fveq2 5679 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  (ψ `  z )  =  (ψ `  X ) )
182 fveq2 5679 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  ( log `  z )  =  ( log `  X
) )
183181, 182oveq12d 6098 . . . . . . . . . . . . . . . 16  |-  ( z  =  X  ->  (
(ψ `  z )  x.  ( log `  z
) )  =  ( (ψ `  X )  x.  ( log `  X
) ) )
184 fveq2 5679 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  X  ->  ( |_ `  z )  =  ( |_ `  X
) )
185184oveq2d 6096 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  X  ->  (
1 ... ( |_ `  z ) )  =  ( 1 ... ( |_ `  X ) ) )
186 simpl 454 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  z  =  X )
187186oveq1d 6095 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( z  /  n )  =  ( X  /  n ) )
188187fveq2d 5683 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  (ψ `  (
z  /  n ) )  =  (ψ `  ( X  /  n
) ) )
189188oveq2d 6096 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )
190185, 189sumeq12rdv 13168 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  sum_ n  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
191143, 190syl5eq 2477 . . . . . . . . . . . . . . . 16  |-  ( z  =  X  ->  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
192183, 191oveq12d 6098 . . . . . . . . . . . . . . 15  |-  ( z  =  X  ->  (
( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  =  ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) ) )
193 id 22 . . . . . . . . . . . . . . 15  |-  ( z  =  X  ->  z  =  X )
194192, 193oveq12d 6098 . . . . . . . . . . . . . 14  |-  ( z  =  X  ->  (
( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  =  ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X ) )
195182oveq2d 6096 . . . . . . . . . . . . . 14  |-  ( z  =  X  ->  (
2  x.  ( log `  z ) )  =  ( 2  x.  ( log `  X ) ) )
196194, 195oveq12d 6098 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) )  =  ( ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )
197196fveq2d 5683 . . . . . . . . . . . 12  |-  ( z  =  X  ->  ( abs `  ( ( ( ( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  /  z )  -  ( 2  x.  ( log `  z
) ) ) )  =  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) ) )
198197breq1d 4290 . . . . . . . . . . 11  |-  ( z  =  X  ->  (
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  <->  ( abs `  ( ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
) )
199198rspcv 3058 . . . . . . . . . 10  |-  ( X  e.  ( 1 [,) +oo )  ->  ( A. z  e.  ( 1 [,) +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  ->  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
) )
200180, 135, 199sylc 60 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
)
20186, 26rerpdivcld 11042 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  e.  RR )
202201, 76, 35absdifled 12905 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B  <->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X )  /\  ( ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  <_ 
( ( 2  x.  ( log `  X
) )  +  B
) ) ) )
203200, 202mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X )  /\  ( ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  <_ 
( ( 2  x.  ( log `  X
) )  +  B
) ) )
204203simpld 456 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X ) )
20577, 86, 26lemuldivd 11060 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  ( log `  X ) )  -  B )  x.  X
)  <_  ( (
(ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  <-> 
( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X ) ) )
206204, 205mpbird 232 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  <_  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )
20774, 78, 84, 86, 177, 206le2subd 9946 . . . . 5  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  <_  ( (
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  x.  Y )  -  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) ) )
20855recnd 9400 . . . . . . 7  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  e.  CC )
20985recnd 9400 . . . . . . 7  |-  ( ph  ->  ( (ψ `  X
)  x.  ( log `  X ) )  e.  CC )
21073recnd 9400 . . . . . . 7  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  CC )
211208, 209, 210pnpcan2d 9745 . . . . . 6  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  =  ( ( (ψ `  Y )  x.  ( log `  X
) )  -  (
(ψ `  X )  x.  ( log `  X
) ) ) )
21213recnd 9400 . . . . . . 7  |-  ( ph  ->  (ψ `  Y )  e.  CC )
21315recnd 9400 . . . . . . 7  |-  ( ph  ->  (ψ `  X )  e.  CC )
21427recnd 9400 . . . . . . 7  |-  ( ph  ->  ( log `  X
)  e.  CC )
215212, 213, 214subdird 9789 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  =  ( ( (ψ `  Y
)  x.  ( log `  X ) )  -  ( (ψ `  X )  x.  ( log `  X
) ) ) )
216211, 215eqtr4d 2468 . . . . 5  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  =  ( ( (ψ `  Y )  -  (ψ `  X )
)  x.  ( log `  X ) ) )
21776, 11remulcld 9402 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  Y
)  e.  RR )
218217recnd 9400 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  Y
)  e.  CC )
21935, 40readdcld 9401 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  A ) ) )  e.  RR )
220219, 11remulcld 9402 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  e.  RR )
221220recnd 9400 . . . . . . 7  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  e.  CC )
22276, 4remulcld 9402 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  X
)  e.  RR )
223222recnd 9400 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  X
)  e.  CC )
22435, 4remulcld 9402 . . . . . . . . 9  |-  ( ph  ->  ( B  x.  X
)  e.  RR )
225224recnd 9400 . . . . . . . 8  |-  ( ph  ->  ( B  x.  X
)  e.  CC )
226225negcld 9694 . . . . . . 7  |-  ( ph  -> 
-u ( B  x.  X )  e.  CC )
227218, 221, 223, 226addsub4d 9754 . . . . . 6  |-  ( ph  ->  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  +  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y ) )  -  ( ( ( 2  x.  ( log `  X ) )  x.  X )  +  -u ( B  x.  X
) ) )  =  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  (
( 2  x.  ( log `  X ) )  x.  X ) )  +  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
) ) )
2285, 26relogmuld 21959 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( log `  ( A  x.  X )
)  =  ( ( log `  A )  +  ( log `  X
) ) )
22938recnd 9400 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( log `  A
)  e.  CC )
230229, 214addcomd 9559 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( log `  A
)  +  ( log `  X ) )  =  ( ( log `  X
)  +  ( log `  A ) ) )
231228, 230eqtrd 2465 . . . . . . . . . . . . 13  |-  ( ph  ->  ( log `  ( A  x.  X )
)  =  ( ( log `  X )  +  ( log `  A
) ) )
232231oveq2d 6096 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  =  ( 2  x.  ( ( log `  X
)  +  ( log `  A ) ) ) )
233 2cnd 10382 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  CC )
234233, 214, 229adddid 9398 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  (
( log `  X
)  +  ( log `  A ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) )
235232, 234eqtrd 2465 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) )
236235oveq2d 6096 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  =  ( B  +  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) ) )
23735recnd 9400 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
23876recnd 9400 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  X ) )  e.  CC )
23940recnd 9400 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  A ) )  e.  CC )
240237, 238, 239add12d 9579 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  ( ( 2  x.  ( log `  X ) )  +  ( 2  x.  ( log `  A
) ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) ) )
241236, 240eqtrd 2465 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) ) )
242241oveq1d 6095 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X ) )  +  ( B  +  ( 2  x.  ( log `  A ) ) ) )  x.  Y ) )
243219recnd 9400 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  A ) ) )  e.  CC )
24411recnd 9400 . . . . . . . . 9  |-  ( ph  ->  Y  e.  CC )
245238, 243, 244adddird 9399 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X
) )  x.  Y
)  +  ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y ) ) )
246242, 245eqtrd 2465 . . . . . . 7  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  +  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y ) ) )
2474recnd 9400 . . . . . . . . 9  |-  ( ph  ->  X  e.  CC )
248238, 237, 247subdird 9789 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  -  ( B  x.  X )
) )
249223, 225negsubd 9713 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  x.  X
)  +  -u ( B  x.  X )
)  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  -  ( B  x.  X
) ) )
250248, 249eqtr4d 2468 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  +  -u ( B  x.  X
) ) )
251246, 250oveq12d 6098 . . . . . 6  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y )  -  (
( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) )  =  ( ( ( ( 2  x.  ( log `  X
) )  x.  Y
)  +  ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y ) )  -  ( ( ( 2  x.  ( log `  X
) )  x.  X
)  +  -u ( B  x.  X )
) ) )
25230recnd 9400 . . . . . . . . 9  |-  ( ph  ->  ( Y  -  X
)  e.  CC )
253233, 252, 214mul32d 9567 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  =  ( ( 2  x.  ( log `  X
) )  x.  ( Y  -  X )
) )
254238, 244, 247subdid 9788 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  ( Y  -  X )
)  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  ( ( 2  x.  ( log `  X
) )  x.  X
) ) )
255253, 254eqtrd 2465 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  (
( 2  x.  ( log `  X ) )  x.  X ) ) )
25635, 11remulcld 9402 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  Y
)  e.  RR )
257256recnd 9400 . . . . . . . . . 10  |-  ( ph  ->  ( B  x.  Y
)  e.  CC )
25841recnd 9400 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  e.  CC )
259257, 225, 258add32d 9580 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  x.  Y )  +  ( B  x.  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  x.  Y )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) )  +  ( B  x.  X ) ) )
260237, 244, 247adddid 9398 . . . . . . . . . 10  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  =  ( ( B  x.  Y )  +  ( B  x.  X ) ) )
261260oveq1d 6095 . . . . . . . . 9  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  x.  Y )  +  ( B  x.  X ) )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) )
262237, 239, 244adddird 9399 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  =  ( ( B  x.  Y )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) )
263262oveq1d 6095 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  +  ( B  x.  X ) )  =  ( ( ( B  x.  Y
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  +  ( B  x.  X
) ) )
264259, 261, 2633eqtr4d 2475 . . . . . . . 8  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  +  ( B  x.  X ) ) )
265221, 225subnegd 9714 . . . . . . . 8  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
)  =  ( ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  +  ( B  x.  X
) ) )
266264, 265eqtr4d 2468 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
) )
267255, 266oveq12d 6098 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  =  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  ( ( 2  x.  ( log `  X
) )  x.  X
) )  +  ( ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  -  -u ( B  x.  X ) ) ) )
268227, 251, 2673eqtr4d 2475 . . . . 5  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y )  -  (
( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) )  =  ( ( ( 2  x.  ( Y  -  X )
)  x.  ( log `  X ) )  +  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) ) )
269207, 216, 2683brtr3d 4309 . . . 4  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( ( B  x.  ( Y  +  X ) )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) ) )
27047, 4remulcld 9402 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  x.  X
)  e.  RR )
27150, 4remulcld 9402 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  e.  RR )
27211, 7, 4, 164leadd1dd 9941 . . . . . . . . . 10  |-  ( ph  ->  ( Y  +  X
)  <_  ( ( A  x.  X )  +  X ) )
2736recnd 9400 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
27419recnd 9400 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
275273, 274, 247adddird 9399 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  =  ( ( A  x.  X )  +  ( 1  x.  X ) ) )
276247mulid2d 9392 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  x.  X
)  =  X )
277276oveq2d 6096 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  X )  +  ( 1  x.  X ) )  =  ( ( A  x.  X )  +  X ) )
278275, 277eqtrd 2465 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  =  ( ( A  x.  X )  +  X ) )
279272, 278breqtrrd 4306 . . . . . . . . 9  |-  ( ph  ->  ( Y  +  X
)  <_  ( ( A  +  1 )  x.  X ) )
28046, 4remulcld 9402 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  e.  RR )
28136, 280, 34lemul2d 11055 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  +  X )  <_  (
( A  +  1 )  x.  X )  <-> 
( B  x.  ( Y  +  X )
)  <_  ( B  x.  ( ( A  + 
1 )  x.  X
) ) ) )
282279, 281mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  <_  ( B  x.  ( ( A  + 
1 )  x.  X
) ) )
28346recnd 9400 . . . . . . . . 9  |-  ( ph  ->  ( A  +  1 )  e.  CC )
284237, 283, 247mulassd 9397 . . . . . . . 8  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  x.  X
)  =  ( B  x.  ( ( A  +  1 )  x.  X ) ) )
285282, 284breqtrrd 4306 . . . . . . 7  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  <_  ( ( B  x.  ( A  +  1 ) )  x.  X ) )
28629a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  RR )
287 0le2 10400 . . . . . . . . . . 11  |-  0  <_  2
288287a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  <_  2 )
289 log1 21919 . . . . . . . . . . 11  |-  ( log `  1 )  =  0
290 chpdifbnd.1 . . . . . . . . . . . 12  |-  ( ph  ->  1  <_  A )
291 1rp 10983 . . . . . . . . . . . . 13  |-  1  e.  RR+
292 logleb 21937 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR+  /\  A  e.  RR+ )  ->  (
1  <_  A  <->  ( log `  1 )  <_  ( log `  A ) ) )
293291, 5, 292sylancr 656 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  <_  A  <->  ( log `  1 )  <_  ( log `  A
) ) )
294290, 293mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  1
)  <_  ( log `  A ) )
295289, 294syl5eqbrr 4314 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( log `  A ) )
296286, 38, 288, 295mulge0d 9904 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( 2  x.  ( log `  A
) ) )
29711, 7, 40, 296, 164lemul2ad 10261 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  <_  ( (
2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
29849recnd 9400 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  A
)  e.  CC )
299298, 229, 247mulassd 9397 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  =  ( ( 2  x.  A )  x.  ( ( log `  A )  x.  X
) ) )
300233, 273, 229, 247mul4d 9569 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  A )  x.  (
( log `  A
)  x.  X ) )  =  ( ( 2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
301299, 300eqtrd 2465 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  =  ( ( 2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
302297, 301breqtrrd 4306 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  <_  ( (
( 2  x.  A
)  x.  ( log `  A ) )  x.  X ) )
30337, 41, 270, 271, 285, 302le2addd 9945 . . . . . 6  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  <_  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
30444oveq1i 6090 . . . . . . 7  |-  ( C  x.  X )  =  ( ( ( B  x.  ( A  + 
1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )  x.  X )
30547recnd 9400 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( A  +  1 ) )  e.  CC )
30650recnd 9400 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  A )  x.  ( log `  A ) )  e.  CC )
307305, 306, 247adddird 9399 . . . . . . 7  |-  ( ph  ->  ( ( ( B  x.  ( A  + 
1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )  x.  X )  =  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
308304, 307syl5eq 2477 . . . . . 6  |-  ( ph  ->  ( C  x.  X
)  =  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
309303, 308breqtrrd 4306 . . . . 5  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  <_  ( C  x.  X ) )
31042, 53, 33, 309leadd2dd 9942 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  <_  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) ) )
31128, 43, 54, 269, 310letrd 9516 . . 3  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( C  x.  X ) ) )
31232recnd 9400 . . . . 5  |-  ( ph  ->  ( 2  x.  ( Y  -  X )
)  e.  CC )
3134, 24rplogcld 21963 . . . . . . . 8  |-  ( ph  ->  ( log `  X
)  e.  RR+ )
3144, 313rerpdivcld 11042 . . . . . . 7  |-  ( ph  ->  ( X  /  ( log `  X ) )  e.  RR )
31552, 314remulcld 9402 . . . . . 6  |-  ( ph  ->  ( C  x.  ( X  /  ( log `  X
) ) )  e.  RR )
316315recnd 9400 . . . . 5  |-  ( ph  ->  ( C  x.  ( X  /  ( log `  X
) ) )  e.  CC )
317312, 316, 214adddird 9399 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) )  =  ( ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( ( C  x.  ( X  / 
( log `  X
) ) )  x.  ( log `  X
) ) ) )
31852recnd 9400 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
319314recnd 9400 . . . . . . 7  |-  ( ph  ->  ( X  /  ( log `  X ) )  e.  CC )
320318, 319, 214mulassd 9397 . . . . . 6  |-  ( ph  ->  ( ( C  x.  ( X  /  ( log `  X ) ) )  x.  ( log `  X ) )  =  ( C  x.  (
( X  /  ( log `  X ) )  x.  ( log `  X
) ) ) )
321313rpne0d 11020 . . . . . . . 8  |-  ( ph  ->  ( log `  X
)  =/=  0 )
322247, 214, 321divcan1d 10096 . . . . . . 7  |-  ( ph  ->  ( ( X  / 
( log `  X
) )  x.  ( log `  X ) )  =  X )
323322oveq2d 6096 . . . . . 6  |-  ( ph  ->  ( C  x.  (
( X  /  ( log `  X ) )  x.  ( log `  X
) ) )  =  ( C  x.  X
) )
324320, 323eqtrd 2465 . . . . 5  |-  ( ph  ->  ( ( C  x.  ( X  /  ( log `  X ) ) )  x.  ( log `  X ) )  =  ( C  x.  X
) )
325324oveq2d 6096 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( C  x.  ( X  /  ( log `  X
) ) )  x.  ( log `  X
) ) )  =  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) ) )
326317, 325eqtrd 2465 . . 3  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) )  =  ( ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( C  x.  X ) ) )
327311, 326breqtrrd 4306 . 2  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) ) )
32832, 315readdcld 9401 . . 3  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  e.  RR )
32916, 328, 313lemul1d 11054 . 2  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  <-> 
( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) ) ) )
330327, 329mpbird 232 1  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705    C_ wss 3316   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275   +oocpnf 9403    < clt 9406    <_ cle 9407    - cmin 9583   -ucneg 9584    / cdiv 9981   NNcn 10310   2c2 10359   ZZ>=cuz 10849   RR+crp 10979   (,)cioo 11288   [,)cico 11290   [,]cicc 11291   ...cfz 11424   |_cfl 11624   abscabs 12707   sum_csu 13147   logclog 21891  Λcvma 22314  ψcchp 22315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-ef 13336  df-sin 13338  df-cos 13339  df-pi 13341  df-dvds 13519  df-gcd 13674  df-prm 13747  df-pc 13887  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-limc 21183  df-dv 21184  df-log 21893  df-vma 22320  df-chp 22321
This theorem is referenced by:  chpdifbndlem2  22688
  Copyright terms: Public domain W3C validator