MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdifbndlem1 Structured version   Unicode version

Theorem chpdifbndlem1 24387
Description: Lemma for chpdifbnd 24389. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
chpdifbnd.a  |-  ( ph  ->  A  e.  RR+ )
chpdifbnd.1  |-  ( ph  ->  1  <_  A )
chpdifbnd.b  |-  ( ph  ->  B  e.  RR+ )
chpdifbnd.2  |-  ( ph  ->  A. z  e.  ( 1 [,) +oo )
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B
)
chpdifbnd.c  |-  C  =  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )
chpdifbnd.x  |-  ( ph  ->  X  e.  ( 1 (,) +oo ) )
chpdifbnd.y  |-  ( ph  ->  Y  e.  ( X [,] ( A  x.  X ) ) )
Assertion
Ref Expression
chpdifbndlem1  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) ) )
Distinct variable groups:    z, m, C    z, X    z, Y    z, B
Allowed substitution hints:    ph( z, m)    A( z, m)    B( m)    X( m)    Y( m)

Proof of Theorem chpdifbndlem1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 chpdifbnd.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( X [,] ( A  x.  X ) ) )
2 ioossre 11702 . . . . . . . . . . 11  |-  ( 1 (,) +oo )  C_  RR
3 chpdifbnd.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( 1 (,) +oo ) )
42, 3sseldi 3464 . . . . . . . . . 10  |-  ( ph  ->  X  e.  RR )
5 chpdifbnd.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
65rpred 11347 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
76, 4remulcld 9677 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  X
)  e.  RR )
8 elicc2 11705 . . . . . . . . . 10  |-  ( ( X  e.  RR  /\  ( A  x.  X
)  e.  RR )  ->  ( Y  e.  ( X [,] ( A  x.  X )
)  <->  ( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X )
) ) )
94, 7, 8syl2anc 666 . . . . . . . . 9  |-  ( ph  ->  ( Y  e.  ( X [,] ( A  x.  X ) )  <-> 
( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X ) ) ) )
101, 9mpbid 214 . . . . . . . 8  |-  ( ph  ->  ( Y  e.  RR  /\  X  <_  Y  /\  Y  <_  ( A  x.  X ) ) )
1110simp1d 1018 . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
12 chpcl 24047 . . . . . . 7  |-  ( Y  e.  RR  ->  (ψ `  Y )  e.  RR )
1311, 12syl 17 . . . . . 6  |-  ( ph  ->  (ψ `  Y )  e.  RR )
14 chpcl 24047 . . . . . . 7  |-  ( X  e.  RR  ->  (ψ `  X )  e.  RR )
154, 14syl 17 . . . . . 6  |-  ( ph  ->  (ψ `  X )  e.  RR )
1613, 15resubcld 10053 . . . . 5  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  e.  RR )
17 0red 9650 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
18 1re 9648 . . . . . . . . 9  |-  1  e.  RR
1918a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
20 0lt1 10142 . . . . . . . . 9  |-  0  <  1
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
22 eliooord 11700 . . . . . . . . . 10  |-  ( X  e.  ( 1 (,) +oo )  ->  ( 1  <  X  /\  X  < +oo ) )
233, 22syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  X  /\  X  < +oo )
)
2423simpld 461 . . . . . . . 8  |-  ( ph  ->  1  <  X )
2517, 19, 4, 21, 24lttrd 9802 . . . . . . 7  |-  ( ph  ->  0  <  X )
264, 25elrpd 11344 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
2726relogcld 23568 . . . . 5  |-  ( ph  ->  ( log `  X
)  e.  RR )
2816, 27remulcld 9677 . . . 4  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  e.  RR )
29 2re 10685 . . . . . . 7  |-  2  e.  RR
3011, 4resubcld 10053 . . . . . . 7  |-  ( ph  ->  ( Y  -  X
)  e.  RR )
31 remulcl 9630 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( Y  -  X
)  e.  RR )  ->  ( 2  x.  ( Y  -  X
) )  e.  RR )
3229, 30, 31sylancr 668 . . . . . 6  |-  ( ph  ->  ( 2  x.  ( Y  -  X )
)  e.  RR )
3332, 27remulcld 9677 . . . . 5  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  e.  RR )
34 chpdifbnd.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR+ )
3534rpred 11347 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
3611, 4readdcld 9676 . . . . . . 7  |-  ( ph  ->  ( Y  +  X
)  e.  RR )
3735, 36remulcld 9677 . . . . . 6  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  e.  RR )
385relogcld 23568 . . . . . . . 8  |-  ( ph  ->  ( log `  A
)  e.  RR )
39 remulcl 9630 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( log `  A )  e.  RR )  -> 
( 2  x.  ( log `  A ) )  e.  RR )
4029, 38, 39sylancr 668 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( log `  A ) )  e.  RR )
4140, 11remulcld 9677 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  e.  RR )
4237, 41readdcld 9676 . . . . 5  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  e.  RR )
4333, 42readdcld 9676 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  e.  RR )
44 chpdifbnd.c . . . . . . 7  |-  C  =  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )
45 peano2re 9812 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
466, 45syl 17 . . . . . . . . 9  |-  ( ph  ->  ( A  +  1 )  e.  RR )
4735, 46remulcld 9677 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( A  +  1 ) )  e.  RR )
48 remulcl 9630 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
4929, 6, 48sylancr 668 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  A
)  e.  RR )
5049, 38remulcld 9677 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  A )  x.  ( log `  A ) )  e.  RR )
5147, 50readdcld 9676 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  +  ( ( 2  x.  A
)  x.  ( log `  A ) ) )  e.  RR )
5244, 51syl5eqel 2515 . . . . . 6  |-  ( ph  ->  C  e.  RR )
5352, 4remulcld 9677 . . . . 5  |-  ( ph  ->  ( C  x.  X
)  e.  RR )
5433, 53readdcld 9676 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) )  e.  RR )
5513, 27remulcld 9677 . . . . . . 7  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  e.  RR )
56 fzfid 12191 . . . . . . . 8  |-  ( ph  ->  ( 1 ... ( |_ `  X ) )  e.  Fin )
5710simp2d 1019 . . . . . . . . . . . 12  |-  ( ph  ->  X  <_  Y )
58 flword2 12053 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  X  <_  Y )  ->  ( |_ `  Y )  e.  ( ZZ>= `  ( |_ `  X ) ) )
594, 11, 57, 58syl3anc 1265 . . . . . . . . . . 11  |-  ( ph  ->  ( |_ `  Y
)  e.  ( ZZ>= `  ( |_ `  X ) ) )
60 fzss2 11844 . . . . . . . . . . 11  |-  ( ( |_ `  Y )  e.  ( ZZ>= `  ( |_ `  X ) )  ->  ( 1 ... ( |_ `  X
) )  C_  (
1 ... ( |_ `  Y ) ) )
6159, 60syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... ( |_ `  X ) ) 
C_  ( 1 ... ( |_ `  Y
) ) )
6261sselda 3466 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  n  e.  ( 1 ... ( |_ `  Y ) ) )
63 elfznn 11834 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  Y
) )  ->  n  e.  NN )
6463adantl 468 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  n  e.  NN )
65 vmacl 24041 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6664, 65syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (Λ `  n
)  e.  RR )
67 nndivre 10651 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  n  e.  NN )  ->  ( X  /  n
)  e.  RR )
684, 63, 67syl2an 480 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( X  /  n )  e.  RR )
69 chpcl 24047 . . . . . . . . . . 11  |-  ( ( X  /  n )  e.  RR  ->  (ψ `  ( X  /  n
) )  e.  RR )
7068, 69syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( X  /  n ) )  e.  RR )
7166, 70remulcld 9677 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  e.  RR )
7262, 71syldan 473 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  e.  RR )
7356, 72fsumrecl 13797 . . . . . . 7  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  RR )
7455, 73readdcld 9676 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  e.  RR )
75 remulcl 9630 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( log `  X )  e.  RR )  -> 
( 2  x.  ( log `  X ) )  e.  RR )
7629, 27, 75sylancr 668 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( log `  X ) )  e.  RR )
7776, 35resubcld 10053 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  -  B
)  e.  RR )
7877, 4remulcld 9677 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  e.  RR )
795, 26rpmulcld 11363 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  X
)  e.  RR+ )
8079relogcld 23568 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( A  x.  X )
)  e.  RR )
81 remulcl 9630 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( log `  ( A  x.  X ) )  e.  RR )  -> 
( 2  x.  ( log `  ( A  x.  X ) ) )  e.  RR )
8229, 80, 81sylancr 668 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  e.  RR )
8335, 82readdcld 9676 . . . . . . 7  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  e.  RR )
8483, 11remulcld 9677 . . . . . 6  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  e.  RR )
8515, 27remulcld 9677 . . . . . . 7  |-  ( ph  ->  ( (ψ `  X
)  x.  ( log `  X ) )  e.  RR )
8685, 73readdcld 9676 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  e.  RR )
8717, 4, 11, 25, 57ltletrd 9801 . . . . . . . . . . 11  |-  ( ph  ->  0  <  Y )
8811, 87elrpd 11344 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  RR+ )
8988relogcld 23568 . . . . . . . . 9  |-  ( ph  ->  ( log `  Y
)  e.  RR )
9013, 89remulcld 9677 . . . . . . . 8  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  Y ) )  e.  RR )
91 fzfid 12191 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... ( |_ `  Y ) )  e.  Fin )
92 nndivre 10651 . . . . . . . . . . . 12  |-  ( ( Y  e.  RR  /\  n  e.  NN )  ->  ( Y  /  n
)  e.  RR )
9311, 63, 92syl2an 480 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( Y  /  n )  e.  RR )
94 chpcl 24047 . . . . . . . . . . 11  |-  ( ( Y  /  n )  e.  RR  ->  (ψ `  ( Y  /  n
) )  e.  RR )
9593, 94syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( Y  /  n ) )  e.  RR )
9666, 95remulcld 9677 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) )  e.  RR )
9791, 96fsumrecl 13797 . . . . . . . 8  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) )  e.  RR )
9890, 97readdcld 9676 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  e.  RR )
99 chpge0 24049 . . . . . . . . . 10  |-  ( Y  e.  RR  ->  0  <_  (ψ `  Y )
)
10011, 99syl 17 . . . . . . . . 9  |-  ( ph  ->  0  <_  (ψ `  Y
) )
10126, 88logled 23572 . . . . . . . . . 10  |-  ( ph  ->  ( X  <_  Y  <->  ( log `  X )  <_  ( log `  Y
) ) )
10257, 101mpbid 214 . . . . . . . . 9  |-  ( ph  ->  ( log `  X
)  <_  ( log `  Y ) )
10327, 89, 13, 100, 102lemul2ad 10553 . . . . . . . 8  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  <_ 
( (ψ `  Y
)  x.  ( log `  Y ) ) )
10491, 71fsumrecl 13797 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  RR )
105 vmage0 24044 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
10664, 105syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  (Λ `  n ) )
107 chpge0 24049 . . . . . . . . . . . 12  |-  ( ( X  /  n )  e.  RR  ->  0  <_  (ψ `  ( X  /  n ) ) )
10868, 107syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  (ψ `  ( X  /  n
) ) )
10966, 70, 106, 108mulge0d 10196 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  0  <_  ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
11091, 71, 109, 61fsumless 13853 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )
1114adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  X  e.  RR )
11211adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  Y  e.  RR )
11364nnrpd 11345 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  n  e.  RR+ )
11457adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  X  <_  Y )
115111, 112, 113, 114lediv1dd 11402 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( X  /  n )  <_  ( Y  /  n ) )
116 chpwordi 24080 . . . . . . . . . . . 12  |-  ( ( ( X  /  n
)  e.  RR  /\  ( Y  /  n
)  e.  RR  /\  ( X  /  n
)  <_  ( Y  /  n ) )  -> 
(ψ `  ( X  /  n ) )  <_ 
(ψ `  ( Y  /  n ) ) )
11768, 93, 115, 116syl3anc 1265 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  ( X  /  n ) )  <_  (ψ `  ( Y  /  n ) ) )
11870, 95, 66, 106, 117lemul2ad 10553 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) )  <_ 
( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
11991, 71, 96, 118fsumle 13856 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
12073, 104, 97, 110, 119letrd 9798 . . . . . . . 8  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
12155, 73, 90, 97, 103, 120le2addd 10238 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  <_  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) ) )
12298, 88rerpdivcld 11375 . . . . . . . . 9  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  e.  RR )
123 remulcl 9630 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( log `  Y )  e.  RR )  -> 
( 2  x.  ( log `  Y ) )  e.  RR )
12429, 89, 123sylancr 668 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( log `  Y ) )  e.  RR )
12535, 124readdcld 9676 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  Y ) ) )  e.  RR )
126122, 124resubcld 10053 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  e.  RR )
127126recnd 9675 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  e.  CC )
128127abscld 13495 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  e.  RR )
129126leabsd 13474 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  <_  ( abs `  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) ) )
13019, 4, 24ltled 9789 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  X )
13119, 4, 11, 130, 57letrd 9798 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  Y )
132 elicopnf 11736 . . . . . . . . . . . . . 14  |-  ( 1  e.  RR  ->  ( Y  e.  ( 1 [,) +oo )  <->  ( Y  e.  RR  /\  1  <_  Y ) ) )
13318, 132ax-mp 5 . . . . . . . . . . . . 13  |-  ( Y  e.  ( 1 [,) +oo )  <->  ( Y  e.  RR  /\  1  <_  Y ) )
13411, 131, 133sylanbrc 669 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  ( 1 [,) +oo ) )
135 chpdifbnd.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. z  e.  ( 1 [,) +oo )
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B
)
136 fveq2 5880 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  (ψ `  z )  =  (ψ `  Y ) )
137 fveq2 5880 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  ( log `  z )  =  ( log `  Y
) )
138136, 137oveq12d 6322 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  Y  ->  (
(ψ `  z )  x.  ( log `  z
) )  =  ( (ψ `  Y )  x.  ( log `  Y
) ) )
139 fveq2 5880 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (Λ `  m )  =  (Λ `  n ) )
140 oveq2 6312 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  (
z  /  m )  =  ( z  /  n ) )
141140fveq2d 5884 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (ψ `  ( z  /  m
) )  =  (ψ `  ( z  /  n
) ) )
142139, 141oveq12d 6322 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  n  ->  (
(Λ `  m )  x.  (ψ `  ( z  /  m ) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) ) )
143142cbvsumv 13759 . . . . . . . . . . . . . . . . . . 19  |-  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  n )  x.  (ψ `  ( z  /  n ) ) )
144 fveq2 5880 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  Y  ->  ( |_ `  z )  =  ( |_ `  Y
) )
145144oveq2d 6320 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  Y  ->  (
1 ... ( |_ `  z ) )  =  ( 1 ... ( |_ `  Y ) ) )
146 simpl 459 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  z  =  Y )
147146oveq1d 6319 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( z  /  n )  =  ( Y  /  n ) )
148147fveq2d 5884 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  (ψ `  (
z  /  n ) )  =  (ψ `  ( Y  /  n
) ) )
149148oveq2d 6320 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  =  Y  /\  n  e.  ( 1 ... ( |_ `  Y ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )
150145, 149sumeq12rdv 13770 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  Y  ->  sum_ n  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
151143, 150syl5eq 2476 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  Y  ->  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )
152138, 151oveq12d 6322 . . . . . . . . . . . . . . . . 17  |-  ( z  =  Y  ->  (
( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  =  ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) ) )
153 id 23 . . . . . . . . . . . . . . . . 17  |-  ( z  =  Y  ->  z  =  Y )
154152, 153oveq12d 6322 . . . . . . . . . . . . . . . 16  |-  ( z  =  Y  ->  (
( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  =  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y ) )
155137oveq2d 6320 . . . . . . . . . . . . . . . 16  |-  ( z  =  Y  ->  (
2  x.  ( log `  z ) )  =  ( 2  x.  ( log `  Y ) ) )
156154, 155oveq12d 6322 . . . . . . . . . . . . . . 15  |-  ( z  =  Y  ->  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) )  =  ( ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )
157156fveq2d 5884 . . . . . . . . . . . . . 14  |-  ( z  =  Y  ->  ( abs `  ( ( ( ( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  /  z )  -  ( 2  x.  ( log `  z
) ) ) )  =  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) ) )
158157breq1d 4432 . . . . . . . . . . . . 13  |-  ( z  =  Y  ->  (
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  <->  ( abs `  ( ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
) )
159158rspcv 3179 . . . . . . . . . . . 12  |-  ( Y  e.  ( 1 [,) +oo )  ->  ( A. z  e.  ( 1 [,) +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
) )
160134, 135, 159sylc 63 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) ) )  <_  B
)
161126, 128, 35, 129, 160letrd 9798 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y ) ) )  <_  B )
162122, 124, 35lesubaddd 10216 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( (ψ `  Y
)  x.  ( log `  Y ) )  + 
sum_ n  e.  (
1 ... ( |_ `  Y ) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n ) ) ) )  /  Y )  -  ( 2  x.  ( log `  Y
) ) )  <_  B 
<->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  Y ) ) ) ) )
163161, 162mpbid 214 . . . . . . . . 9  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  Y ) ) ) )
16410simp3d 1020 . . . . . . . . . . . 12  |-  ( ph  ->  Y  <_  ( A  x.  X ) )
16588, 79logled 23572 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y  <_  ( A  x.  X )  <->  ( log `  Y )  <_  ( log `  ( A  x.  X )
) ) )
166164, 165mpbid 214 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  Y
)  <_  ( log `  ( A  x.  X
) ) )
167 2pos 10707 . . . . . . . . . . . . . 14  |-  0  <  2
16829, 167pm3.2i 457 . . . . . . . . . . . . 13  |-  ( 2  e.  RR  /\  0  <  2 )
169168a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
170 lemul2 10464 . . . . . . . . . . . 12  |-  ( ( ( log `  Y
)  e.  RR  /\  ( log `  ( A  x.  X ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( log `  Y )  <_  ( log `  ( A  x.  X ) )  <->  ( 2  x.  ( log `  Y
) )  <_  (
2  x.  ( log `  ( A  x.  X
) ) ) ) )
17189, 80, 169, 170syl3anc 1265 . . . . . . . . . . 11  |-  ( ph  ->  ( ( log `  Y
)  <_  ( log `  ( A  x.  X
) )  <->  ( 2  x.  ( log `  Y
) )  <_  (
2  x.  ( log `  ( A  x.  X
) ) ) ) )
172166, 171mpbid 214 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( log `  Y ) )  <_  ( 2  x.  ( log `  ( A  x.  X )
) ) )
173124, 82, 35, 172leadd2dd 10234 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  Y ) ) )  <_  ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) ) )
174122, 125, 83, 163, 173letrd 9798 . . . . . . . 8  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) ) )
17598, 83, 88ledivmul2d 11398 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( (ψ `  Y )  x.  ( log `  Y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  Y
) ) ( (Λ `  n )  x.  (ψ `  ( Y  /  n
) ) ) )  /  Y )  <_ 
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  <-> 
( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) ) )
176174, 175mpbid 214 . . . . . . 7  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  Y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  Y ) ) ( (Λ `  n
)  x.  (ψ `  ( Y  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) )
17774, 98, 84, 121, 176letrd 9798 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  <_  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y ) )
178 elicopnf 11736 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  ( X  e.  ( 1 [,) +oo )  <->  ( X  e.  RR  /\  1  <_  X ) ) )
17918, 178ax-mp 5 . . . . . . . . . . 11  |-  ( X  e.  ( 1 [,) +oo )  <->  ( X  e.  RR  /\  1  <_  X ) )
1804, 130, 179sylanbrc 669 . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( 1 [,) +oo ) )
181 fveq2 5880 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  (ψ `  z )  =  (ψ `  X ) )
182 fveq2 5880 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  ( log `  z )  =  ( log `  X
) )
183181, 182oveq12d 6322 . . . . . . . . . . . . . . . 16  |-  ( z  =  X  ->  (
(ψ `  z )  x.  ( log `  z
) )  =  ( (ψ `  X )  x.  ( log `  X
) ) )
184 fveq2 5880 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  X  ->  ( |_ `  z )  =  ( |_ `  X
) )
185184oveq2d 6320 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  X  ->  (
1 ... ( |_ `  z ) )  =  ( 1 ... ( |_ `  X ) ) )
186 simpl 459 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  z  =  X )
187186oveq1d 6319 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( z  /  n )  =  ( X  /  n ) )
188187fveq2d 5884 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  (ψ `  (
z  /  n ) )  =  (ψ `  ( X  /  n
) ) )
189188oveq2d 6320 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  =  X  /\  n  e.  ( 1 ... ( |_ `  X ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  =  ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )
190185, 189sumeq12rdv 13770 . . . . . . . . . . . . . . . . 17  |-  ( z  =  X  ->  sum_ n  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  n
)  x.  (ψ `  ( z  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
191143, 190syl5eq 2476 . . . . . . . . . . . . . . . 16  |-  ( z  =  X  ->  sum_ m  e.  ( 1 ... ( |_ `  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )
192183, 191oveq12d 6322 . . . . . . . . . . . . . . 15  |-  ( z  =  X  ->  (
( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  =  ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) ) )
193 id 23 . . . . . . . . . . . . . . 15  |-  ( z  =  X  ->  z  =  X )
194192, 193oveq12d 6322 . . . . . . . . . . . . . 14  |-  ( z  =  X  ->  (
( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  =  ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X ) )
195182oveq2d 6320 . . . . . . . . . . . . . 14  |-  ( z  =  X  ->  (
2  x.  ( log `  z ) )  =  ( 2  x.  ( log `  X ) ) )
196194, 195oveq12d 6322 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) )  =  ( ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )
197196fveq2d 5884 . . . . . . . . . . . 12  |-  ( z  =  X  ->  ( abs `  ( ( ( ( (ψ `  z
)  x.  ( log `  z ) )  + 
sum_ m  e.  (
1 ... ( |_ `  z ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) )  /  z )  -  ( 2  x.  ( log `  z
) ) ) )  =  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) ) )
198197breq1d 4432 . . . . . . . . . . 11  |-  ( z  =  X  ->  (
( abs `  (
( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  <->  ( abs `  ( ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
) )
199198rspcv 3179 . . . . . . . . . 10  |-  ( X  e.  ( 1 [,) +oo )  ->  ( A. z  e.  ( 1 [,) +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z ) )  +  sum_ m  e.  ( 1 ... ( |_
`  z ) ) ( (Λ `  m
)  x.  (ψ `  ( z  /  m
) ) ) )  /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B  ->  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
) )
200180, 135, 199sylc 63 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B
)
20186, 26rerpdivcld 11375 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  e.  RR )
202201, 76, 35absdifled 13494 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  -  ( 2  x.  ( log `  X ) ) ) )  <_  B  <->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X )  /\  ( ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  <_ 
( ( 2  x.  ( log `  X
) )  +  B
) ) ) )
203200, 202mpbid 214 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X )  /\  ( ( ( (ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  /  X )  <_ 
( ( 2  x.  ( log `  X
) )  +  B
) ) )
204203simpld 461 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X ) )
20577, 86, 26lemuldivd 11393 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  ( log `  X ) )  -  B )  x.  X
)  <_  ( (
(ψ `  X )  x.  ( log `  X
) )  +  sum_ n  e.  ( 1 ... ( |_ `  X
) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n
) ) ) )  <-> 
( ( 2  x.  ( log `  X
) )  -  B
)  <_  ( (
( (ψ `  X
)  x.  ( log `  X ) )  + 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) ) )  /  X ) ) )
206204, 205mpbird 236 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  <_  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )
20774, 78, 84, 86, 177, 206le2subd 10239 . . . . 5  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  <_  ( (
( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  x.  Y )  -  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) ) )
20855recnd 9675 . . . . . . 7  |-  ( ph  ->  ( (ψ `  Y
)  x.  ( log `  X ) )  e.  CC )
20985recnd 9675 . . . . . . 7  |-  ( ph  ->  ( (ψ `  X
)  x.  ( log `  X ) )  e.  CC )
21073recnd 9675 . . . . . . 7  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  X ) ) ( (Λ `  n )  x.  (ψ `  ( X  /  n ) ) )  e.  CC )
211208, 209, 210pnpcan2d 10030 . . . . . 6  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  =  ( ( (ψ `  Y )  x.  ( log `  X
) )  -  (
(ψ `  X )  x.  ( log `  X
) ) ) )
21213recnd 9675 . . . . . . 7  |-  ( ph  ->  (ψ `  Y )  e.  CC )
21315recnd 9675 . . . . . . 7  |-  ( ph  ->  (ψ `  X )  e.  CC )
21427recnd 9675 . . . . . . 7  |-  ( ph  ->  ( log `  X
)  e.  CC )
215212, 213, 214subdird 10081 . . . . . 6  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  =  ( ( (ψ `  Y
)  x.  ( log `  X ) )  -  ( (ψ `  X )  x.  ( log `  X
) ) ) )
216211, 215eqtr4d 2467 . . . . 5  |-  ( ph  ->  ( ( ( (ψ `  Y )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) )  -  ( ( (ψ `  X )  x.  ( log `  X ) )  +  sum_ n  e.  ( 1 ... ( |_
`  X ) ) ( (Λ `  n
)  x.  (ψ `  ( X  /  n
) ) ) ) )  =  ( ( (ψ `  Y )  -  (ψ `  X )
)  x.  ( log `  X ) ) )
21776, 11remulcld 9677 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  Y
)  e.  RR )
218217recnd 9675 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  Y
)  e.  CC )
21935, 40readdcld 9676 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  A ) ) )  e.  RR )
220219, 11remulcld 9677 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  e.  RR )
221220recnd 9675 . . . . . . 7  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  e.  CC )
22276, 4remulcld 9677 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  X
)  e.  RR )
223222recnd 9675 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  X
)  e.  CC )
22435, 4remulcld 9677 . . . . . . . . 9  |-  ( ph  ->  ( B  x.  X
)  e.  RR )
225224recnd 9675 . . . . . . . 8  |-  ( ph  ->  ( B  x.  X
)  e.  CC )
226225negcld 9979 . . . . . . 7  |-  ( ph  -> 
-u ( B  x.  X )  e.  CC )
227218, 221, 223, 226addsub4d 10039 . . . . . 6  |-  ( ph  ->  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  +  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y ) )  -  ( ( ( 2  x.  ( log `  X ) )  x.  X )  +  -u ( B  x.  X
) ) )  =  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  (
( 2  x.  ( log `  X ) )  x.  X ) )  +  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
) ) )
2285, 26relogmuld 23570 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( log `  ( A  x.  X )
)  =  ( ( log `  A )  +  ( log `  X
) ) )
22938recnd 9675 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( log `  A
)  e.  CC )
230229, 214addcomd 9841 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( log `  A
)  +  ( log `  X ) )  =  ( ( log `  X
)  +  ( log `  A ) ) )
231228, 230eqtrd 2464 . . . . . . . . . . . . 13  |-  ( ph  ->  ( log `  ( A  x.  X )
)  =  ( ( log `  X )  +  ( log `  A
) ) )
232231oveq2d 6320 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  =  ( 2  x.  ( ( log `  X
)  +  ( log `  A ) ) ) )
233 2cnd 10688 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  CC )
234233, 214, 229adddid 9673 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  (
( log `  X
)  +  ( log `  A ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) )
235232, 234eqtrd 2464 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  ( A  x.  X ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) )
236235oveq2d 6320 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  =  ( B  +  ( ( 2  x.  ( log `  X
) )  +  ( 2  x.  ( log `  A ) ) ) ) )
23735recnd 9675 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
23876recnd 9675 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  X ) )  e.  CC )
23940recnd 9675 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( log `  A ) )  e.  CC )
240237, 238, 239add12d 9862 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  ( ( 2  x.  ( log `  X ) )  +  ( 2  x.  ( log `  A
) ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) ) )
241236, 240eqtrd 2464 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  ( A  x.  X
) ) ) )  =  ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) ) )
242241oveq1d 6319 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X ) )  +  ( B  +  ( 2  x.  ( log `  A ) ) ) )  x.  Y ) )
243219recnd 9675 . . . . . . . . 9  |-  ( ph  ->  ( B  +  ( 2  x.  ( log `  A ) ) )  e.  CC )
24411recnd 9675 . . . . . . . . 9  |-  ( ph  ->  Y  e.  CC )
245238, 243, 244adddird 9674 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  +  ( B  +  ( 2  x.  ( log `  A
) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X
) )  x.  Y
)  +  ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y ) ) )
246242, 245eqtrd 2464 . . . . . . 7  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  ( A  x.  X ) ) ) )  x.  Y )  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  +  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y ) ) )
2474recnd 9675 . . . . . . . . 9  |-  ( ph  ->  X  e.  CC )
248238, 237, 247subdird 10081 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  -  ( B  x.  X )
) )
249223, 225negsubd 9998 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  x.  X
)  +  -u ( B  x.  X )
)  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  -  ( B  x.  X
) ) )
250248, 249eqtr4d 2467 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  ( log `  X
) )  -  B
)  x.  X )  =  ( ( ( 2  x.  ( log `  X ) )  x.  X )  +  -u ( B  x.  X
) ) )
251246, 250oveq12d 6322 . . . . . 6  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y )  -  (
( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) )  =  ( ( ( ( 2  x.  ( log `  X
) )  x.  Y
)  +  ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y ) )  -  ( ( ( 2  x.  ( log `  X
) )  x.  X
)  +  -u ( B  x.  X )
) ) )
25230recnd 9675 . . . . . . . . 9  |-  ( ph  ->  ( Y  -  X
)  e.  CC )
253233, 252, 214mul32d 9849 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  =  ( ( 2  x.  ( log `  X
) )  x.  ( Y  -  X )
) )
254238, 244, 247subdid 10080 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  X
) )  x.  ( Y  -  X )
)  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  ( ( 2  x.  ( log `  X
) )  x.  X
) ) )
255253, 254eqtrd 2464 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  =  ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  (
( 2  x.  ( log `  X ) )  x.  X ) ) )
25635, 11remulcld 9677 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  Y
)  e.  RR )
257256recnd 9675 . . . . . . . . . 10  |-  ( ph  ->  ( B  x.  Y
)  e.  CC )
25841recnd 9675 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  e.  CC )
259257, 225, 258add32d 9863 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  x.  Y )  +  ( B  x.  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  x.  Y )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) )  +  ( B  x.  X ) ) )
260237, 244, 247adddid 9673 . . . . . . . . . 10  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  =  ( ( B  x.  Y )  +  ( B  x.  X ) ) )
261260oveq1d 6319 . . . . . . . . 9  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  x.  Y )  +  ( B  x.  X ) )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) )
262237, 239, 244adddird 9674 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  =  ( ( B  x.  Y )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) )
263262oveq1d 6319 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  +  ( B  x.  X ) )  =  ( ( ( B  x.  Y
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  +  ( B  x.  X
) ) )
264259, 261, 2633eqtr4d 2474 . . . . . . . 8  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  +  ( B  x.  X ) ) )
265221, 225subnegd 9999 . . . . . . . 8  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
)  =  ( ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  +  ( B  x.  X
) ) )
266264, 265eqtr4d 2467 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  =  ( ( ( B  +  ( 2  x.  ( log `  A
) ) )  x.  Y )  -  -u ( B  x.  X )
) )
267255, 266oveq12d 6322 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  =  ( ( ( ( 2  x.  ( log `  X ) )  x.  Y )  -  ( ( 2  x.  ( log `  X
) )  x.  X
) )  +  ( ( ( B  +  ( 2  x.  ( log `  A ) ) )  x.  Y )  -  -u ( B  x.  X ) ) ) )
268227, 251, 2673eqtr4d 2474 . . . . 5  |-  ( ph  ->  ( ( ( B  +  ( 2  x.  ( log `  ( A  x.  X )
) ) )  x.  Y )  -  (
( ( 2  x.  ( log `  X
) )  -  B
)  x.  X ) )  =  ( ( ( 2  x.  ( Y  -  X )
)  x.  ( log `  X ) )  +  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) ) )
269207, 216, 2683brtr3d 4452 . . . 4  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( ( B  x.  ( Y  +  X ) )  +  ( ( 2  x.  ( log `  A
) )  x.  Y
) ) ) )
27047, 4remulcld 9677 . . . . . . 7  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  x.  X
)  e.  RR )
27150, 4remulcld 9677 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  e.  RR )
27211, 7, 4, 164leadd1dd 10233 . . . . . . . . . 10  |-  ( ph  ->  ( Y  +  X
)  <_  ( ( A  x.  X )  +  X ) )
2736recnd 9675 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
27419recnd 9675 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
275273, 274, 247adddird 9674 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  =  ( ( A  x.  X )  +  ( 1  x.  X ) ) )
276247mulid2d 9667 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  x.  X
)  =  X )
277276oveq2d 6320 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  X )  +  ( 1  x.  X ) )  =  ( ( A  x.  X )  +  X ) )
278275, 277eqtrd 2464 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  =  ( ( A  x.  X )  +  X ) )
279272, 278breqtrrd 4449 . . . . . . . . 9  |-  ( ph  ->  ( Y  +  X
)  <_  ( ( A  +  1 )  x.  X ) )
28046, 4remulcld 9677 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  + 
1 )  x.  X
)  e.  RR )
28136, 280, 34lemul2d 11388 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  +  X )  <_  (
( A  +  1 )  x.  X )  <-> 
( B  x.  ( Y  +  X )
)  <_  ( B  x.  ( ( A  + 
1 )  x.  X
) ) ) )
282279, 281mpbid 214 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  <_  ( B  x.  ( ( A  + 
1 )  x.  X
) ) )
28346recnd 9675 . . . . . . . . 9  |-  ( ph  ->  ( A  +  1 )  e.  CC )
284237, 283, 247mulassd 9672 . . . . . . . 8  |-  ( ph  ->  ( ( B  x.  ( A  +  1
) )  x.  X
)  =  ( B  x.  ( ( A  +  1 )  x.  X ) ) )
285282, 284breqtrrd 4449 . . . . . . 7  |-  ( ph  ->  ( B  x.  ( Y  +  X )
)  <_  ( ( B  x.  ( A  +  1 ) )  x.  X ) )
28629a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  RR )
287 0le2 10706 . . . . . . . . . . 11  |-  0  <_  2
288287a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  <_  2 )
289 log1 23531 . . . . . . . . . . 11  |-  ( log `  1 )  =  0
290 chpdifbnd.1 . . . . . . . . . . . 12  |-  ( ph  ->  1  <_  A )
291 1rp 11312 . . . . . . . . . . . . 13  |-  1  e.  RR+
292 logleb 23548 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR+  /\  A  e.  RR+ )  ->  (
1  <_  A  <->  ( log `  1 )  <_  ( log `  A ) ) )
293291, 5, 292sylancr 668 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  <_  A  <->  ( log `  1 )  <_  ( log `  A
) ) )
294290, 293mpbid 214 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  1
)  <_  ( log `  A ) )
295289, 294syl5eqbrr 4457 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( log `  A ) )
296286, 38, 288, 295mulge0d 10196 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( 2  x.  ( log `  A
) ) )
29711, 7, 40, 296, 164lemul2ad 10553 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  <_  ( (
2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
29849recnd 9675 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  A
)  e.  CC )
299298, 229, 247mulassd 9672 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  =  ( ( 2  x.  A )  x.  ( ( log `  A )  x.  X
) ) )
300233, 273, 229, 247mul4d 9851 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  A )  x.  (
( log `  A
)  x.  X ) )  =  ( ( 2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
301299, 300eqtrd 2464 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
)  =  ( ( 2  x.  ( log `  A ) )  x.  ( A  x.  X
) ) )
302297, 301breqtrrd 4449 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  A
) )  x.  Y
)  <_  ( (
( 2  x.  A
)  x.  ( log `  A ) )  x.  X ) )
30337, 41, 270, 271, 285, 302le2addd 10238 . . . . . 6  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  <_  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
30444oveq1i 6314 . . . . . . 7  |-  ( C  x.  X )  =  ( ( ( B  x.  ( A  + 
1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )  x.  X )
30547recnd 9675 . . . . . . . 8  |-  ( ph  ->  ( B  x.  ( A  +  1 ) )  e.  CC )
30650recnd 9675 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  A )  x.  ( log `  A ) )  e.  CC )
307305, 306, 247adddird 9674 . . . . . . 7  |-  ( ph  ->  ( ( ( B  x.  ( A  + 
1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )  x.  X )  =  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
308304, 307syl5eq 2476 . . . . . 6  |-  ( ph  ->  ( C  x.  X
)  =  ( ( ( B  x.  ( A  +  1 ) )  x.  X )  +  ( ( ( 2  x.  A )  x.  ( log `  A
) )  x.  X
) ) )
309303, 308breqtrrd 4449 . . . . 5  |-  ( ph  ->  ( ( B  x.  ( Y  +  X
) )  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) )  <_  ( C  x.  X ) )
31042, 53, 33, 309leadd2dd 10234 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( B  x.  ( Y  +  X )
)  +  ( ( 2  x.  ( log `  A ) )  x.  Y ) ) )  <_  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) ) )
31128, 43, 54, 269, 310letrd 9798 . . 3  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( C  x.  X ) ) )
31232recnd 9675 . . . . 5  |-  ( ph  ->  ( 2  x.  ( Y  -  X )
)  e.  CC )
3134, 24rplogcld 23574 . . . . . . . 8  |-  ( ph  ->  ( log `  X
)  e.  RR+ )
3144, 313rerpdivcld 11375 . . . . . . 7  |-  ( ph  ->  ( X  /  ( log `  X ) )  e.  RR )
31552, 314remulcld 9677 . . . . . 6  |-  ( ph  ->  ( C  x.  ( X  /  ( log `  X
) ) )  e.  RR )
316315recnd 9675 . . . . 5  |-  ( ph  ->  ( C  x.  ( X  /  ( log `  X
) ) )  e.  CC )
317312, 316, 214adddird 9674 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) )  =  ( ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( ( C  x.  ( X  / 
( log `  X
) ) )  x.  ( log `  X
) ) ) )
31852recnd 9675 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
319314recnd 9675 . . . . . . 7  |-  ( ph  ->  ( X  /  ( log `  X ) )  e.  CC )
320318, 319, 214mulassd 9672 . . . . . 6  |-  ( ph  ->  ( ( C  x.  ( X  /  ( log `  X ) ) )  x.  ( log `  X ) )  =  ( C  x.  (
( X  /  ( log `  X ) )  x.  ( log `  X
) ) ) )
321313rpne0d 11352 . . . . . . . 8  |-  ( ph  ->  ( log `  X
)  =/=  0 )
322247, 214, 321divcan1d 10390 . . . . . . 7  |-  ( ph  ->  ( ( X  / 
( log `  X
) )  x.  ( log `  X ) )  =  X )
323322oveq2d 6320 . . . . . 6  |-  ( ph  ->  ( C  x.  (
( X  /  ( log `  X ) )  x.  ( log `  X
) ) )  =  ( C  x.  X
) )
324320, 323eqtrd 2464 . . . . 5  |-  ( ph  ->  ( ( C  x.  ( X  /  ( log `  X ) ) )  x.  ( log `  X ) )  =  ( C  x.  X
) )
325324oveq2d 6320 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( ( C  x.  ( X  /  ( log `  X
) ) )  x.  ( log `  X
) ) )  =  ( ( ( 2  x.  ( Y  -  X ) )  x.  ( log `  X
) )  +  ( C  x.  X ) ) )
326317, 325eqtrd 2464 . . 3  |-  ( ph  ->  ( ( ( 2  x.  ( Y  -  X ) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) )  =  ( ( ( 2  x.  ( Y  -  X
) )  x.  ( log `  X ) )  +  ( C  x.  X ) ) )
327311, 326breqtrrd 4449 . 2  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) ) )
32832, 315readdcld 9676 . . 3  |-  ( ph  ->  ( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  e.  RR )
32916, 328, 313lemul1d 11387 . 2  |-  ( ph  ->  ( ( (ψ `  Y )  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  <-> 
( ( (ψ `  Y )  -  (ψ `  X ) )  x.  ( log `  X
) )  <_  (
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) )  x.  ( log `  X
) ) ) )
330327, 329mpbird 236 1  |-  ( ph  ->  ( (ψ `  Y
)  -  (ψ `  X ) )  <_ 
( ( 2  x.  ( Y  -  X
) )  +  ( C  x.  ( X  /  ( log `  X
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   A.wral 2776    C_ wss 3438   class class class wbr 4422   ` cfv 5600  (class class class)co 6304   RRcr 9544   0cc0 9545   1c1 9546    + caddc 9548    x. cmul 9550   +oocpnf 9678    < clt 9681    <_ cle 9682    - cmin 9866   -ucneg 9867    / cdiv 10275   NNcn 10615   2c2 10665   ZZ>=cuz 11165   RR+crp 11308   (,)cioo 11641   [,)cico 11643   [,]cicc 11644   ...cfz 11790   |_cfl 12031   abscabs 13295   sum_csu 13749   logclog 23500  Λcvma 24014  ψcchp 24015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4535  ax-sep 4545  ax-nul 4554  ax-pow 4601  ax-pr 4659  ax-un 6596  ax-inf2 8154  ax-cnex 9601  ax-resscn 9602  ax-1cn 9603  ax-icn 9604  ax-addcl 9605  ax-addrcl 9606  ax-mulcl 9607  ax-mulrcl 9608  ax-mulcom 9609  ax-addass 9610  ax-mulass 9611  ax-distr 9612  ax-i2m1 9613  ax-1ne0 9614  ax-1rid 9615  ax-rnegex 9616  ax-rrecex 9617  ax-cnre 9618  ax-pre-lttri 9619  ax-pre-lttrn 9620  ax-pre-ltadd 9621  ax-pre-mulgt0 9622  ax-pre-sup 9623  ax-addf 9624  ax-mulf 9625
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3302  df-csb 3398  df-dif 3441  df-un 3443  df-in 3445  df-ss 3452  df-pss 3454  df-nul 3764  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4219  df-int 4255  df-iun 4300  df-iin 4301  df-br 4423  df-opab 4482  df-mpt 4483  df-tr 4518  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-se 4812  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6266  df-ov 6307  df-oprab 6308  df-mpt2 6309  df-of 6544  df-om 6706  df-1st 6806  df-2nd 6807  df-supp 6925  df-wrecs 7038  df-recs 7100  df-rdg 7138  df-1o 7192  df-2o 7193  df-oadd 7196  df-er 7373  df-map 7484  df-pm 7485  df-ixp 7533  df-en 7580  df-dom 7581  df-sdom 7582  df-fin 7583  df-fsupp 7892  df-fi 7933  df-sup 7964  df-inf 7965  df-oi 8033  df-card 8380  df-cda 8604  df-pnf 9683  df-mnf 9684  df-xr 9685  df-ltxr 9686  df-le 9687  df-sub 9868  df-neg 9869  df-div 10276  df-nn 10616  df-2 10674  df-3 10675  df-4 10676  df-5 10677  df-6 10678  df-7 10679  df-8 10680  df-9 10681  df-10 10682  df-n0 10876  df-z 10944  df-dec 11058  df-uz 11166  df-q 11271  df-rp 11309  df-xneg 11415  df-xadd 11416  df-xmul 11417  df-ioo 11645  df-ioc 11646  df-ico 11647  df-icc 11648  df-fz 11791  df-fzo 11922  df-fl 12033  df-mod 12102  df-seq 12219  df-exp 12278  df-fac 12465  df-bc 12493  df-hash 12521  df-shft 13128  df-cj 13160  df-re 13161  df-im 13162  df-sqrt 13296  df-abs 13297  df-limsup 13523  df-clim 13549  df-rlim 13550  df-sum 13750  df-ef 14118  df-sin 14120  df-cos 14121  df-pi 14123  df-dvds 14303  df-gcd 14466  df-prm 14620  df-pc 14784  df-struct 15120  df-ndx 15121  df-slot 15122  df-base 15123  df-sets 15124  df-ress 15125  df-plusg 15200  df-mulr 15201  df-starv 15202  df-sca 15203  df-vsca 15204  df-ip 15205  df-tset 15206  df-ple 15207  df-ds 15209  df-unif 15210  df-hom 15211  df-cco 15212  df-rest 15318  df-topn 15319  df-0g 15337  df-gsum 15338  df-topgen 15339  df-pt 15340  df-prds 15343  df-xrs 15397  df-qtop 15403  df-imas 15404  df-xps 15407  df-mre 15489  df-mrc 15490  df-acs 15492  df-mgm 16485  df-sgrp 16524  df-mnd 16534  df-submnd 16580  df-mulg 16673  df-cntz 16968  df-cmn 17429  df-psmet 18959  df-xmet 18960  df-met 18961  df-bl 18962  df-mopn 18963  df-fbas 18964  df-fg 18965  df-cnfld 18968  df-top 19917  df-bases 19918  df-topon 19919  df-topsp 19920  df-cld 20030  df-ntr 20031  df-cls 20032  df-nei 20110  df-lp 20148  df-perf 20149  df-cn 20239  df-cnp 20240  df-haus 20327  df-tx 20573  df-hmeo 20766  df-fil 20857  df-fm 20949  df-flim 20950  df-flf 20951  df-xms 21331  df-ms 21332  df-tms 21333  df-cncf 21906  df-limc 22817  df-dv 22818  df-log 23502  df-vma 24020  df-chp 24021
This theorem is referenced by:  chpdifbndlem2  24388
  Copyright terms: Public domain W3C validator