MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtsum Structured version   Unicode version

Theorem chpchtsum 23222
Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpchtsum  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) (
theta `  ( A  ^c  ( 1  / 
k ) ) ) )
Distinct variable group:    A, k

Proof of Theorem chpchtsum
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 fzfid 12047 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
2 inss2 3719 . . . . . . . . . 10  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
3 simpr 461 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
42, 3sseldi 3502 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
5 prmnn 14075 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  NN )
64, 5syl 16 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
76nnrpd 11251 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
87relogcld 22736 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
98recnd 9618 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
10 fsumconst 13564 . . . . 5  |-  ( ( ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin  /\  ( log `  p
)  e.  CC )  ->  sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  ( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
111, 9, 10syl2anc 661 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
)  =  ( (
# `  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
12 simpl 457 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
13 1red 9607 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  RR )
146nnred 10547 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
15 prmuz2 14090 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
164, 15syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
17 eluz2b2 11150 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1817simprbi 464 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
1916, 18syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  p )
20 inss1 3718 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
2120, 3sseldi 3502 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 0 [,] A ) )
22 0re 9592 . . . . . . . . . . . . . 14  |-  0  e.  RR
23 elicc2 11585 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
2422, 12, 23sylancr 663 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
2521, 24mpbid 210 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
2625simp3d 1010 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
2713, 14, 12, 19, 26ltletrd 9737 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  A )
2812, 27rplogcld 22742 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR+ )
2914, 19rplogcld 22742 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
3028, 29rpdivcld 11269 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR+ )
3130rpred 11252 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
3230rpge0d 11256 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( ( log `  A )  / 
( log `  p
) ) )
33 flge0nn0 11918 . . . . . . 7  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  0  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
3431, 32, 33syl2anc 661 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
35 hashfz1 12383 . . . . . 6  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
3634, 35syl 16 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( # `  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
3736oveq1d 6297 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) )  =  ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  x.  ( log `  p ) ) )
3831flcld 11899 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
3938zcnd 10963 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  CC )
4039, 9mulcomd 9613 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  x.  ( log `  p
) )  =  ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
4111, 37, 403eqtrrd 2513 . . 3  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
) )
4241sumeq2dv 13484 . 2  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
43 chpval2 23221 . 2  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
44 simpl 457 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
45 0red 9593 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  e.  RR )
46 1red 9607 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  RR )
47 0lt1 10071 . . . . . . . . 9  |-  0  <  1
4847a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <  1
)
49 elfzuz2 11687 . . . . . . . . 9  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  ( |_ `  A )  e.  ( ZZ>= `  1 )
)
50 eluzle 11090 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  ( ZZ>= `  1
)  ->  1  <_  ( |_ `  A ) )
5150adantl 466 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  1  <_  ( |_ `  A
) )
52 simpl 457 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  A  e.  RR )
53 1z 10890 . . . . . . . . . . 11  |-  1  e.  ZZ
54 flge 11906 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  e.  ZZ )  ->  ( 1  <_  A  <->  1  <_  ( |_ `  A ) ) )
5552, 53, 54sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  (
1  <_  A  <->  1  <_  ( |_ `  A ) ) )
5651, 55mpbird 232 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  1  <_  A )
5749, 56sylan2 474 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  <_  A
)
5845, 46, 44, 48, 57ltletrd 9737 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <  A
)
5945, 44, 58ltled 9728 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <_  A
)
60 elfznn 11710 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  k  e.  NN )
6160adantl 466 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  k  e.  NN )
6261nnrecred 10577 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  / 
k )  e.  RR )
6344, 59, 62recxpcld 22832 . . . . 5  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  ^c  ( 1  / 
k ) )  e.  RR )
64 chtval 23112 . . . . 5  |-  ( ( A  ^c  ( 1  /  k ) )  e.  RR  ->  (
theta `  ( A  ^c  ( 1  / 
k ) ) )  =  sum_ p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
( log `  p
) )
6563, 64syl 16 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( theta `  ( A  ^c  ( 1  /  k ) ) )  =  sum_ p  e.  ( ( 0 [,] ( A  ^c 
( 1  /  k
) ) )  i^i 
Prime ) ( log `  p
) )
6665sumeq2dv 13484 . . 3  |-  ( A  e.  RR  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( theta `  ( A  ^c  ( 1  /  k ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) )
sum_ p  e.  (
( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
( log `  p
) )
67 ppifi 23107 . . . 4  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
68 fzfid 12047 . . . 4  |-  ( A  e.  RR  ->  (
1 ... ( |_ `  A ) )  e. 
Fin )
692sseli 3500 . . . . . . . 8  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e. 
Prime )
70 elfznn 11710 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
7169, 70anim12i 566 . . . . . . 7  |-  ( ( p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  -> 
( p  e.  Prime  /\  k  e.  NN ) )
7271a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
p  e.  Prime  /\  k  e.  NN ) ) )
73 0red 9593 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  e.  RR )
742a1i 11 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  C_  Prime )
7574sselda 3504 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
7675, 5syl 16 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
7776nnred 10547 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
7876nngt0d 10575 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  p )
7973, 77, 12, 78, 26ltletrd 9737 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  A )
8079ex 434 . . . . . . 7  |-  ( A  e.  RR  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  0  <  A ) )
8180adantrd 468 . . . . . 6  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  0  <  A ) )
8272, 81jcad 533 . . . . 5  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( p  e.  Prime  /\  k  e.  NN )  /\  0  <  A
) ) )
83 inss2 3719 . . . . . . . . 9  |-  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )  C_ 
Prime
8483sseli 3500 . . . . . . . 8  |-  ( p  e.  ( ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  i^i  Prime )  ->  p  e.  Prime )
8560, 84anim12ci 567 . . . . . . 7  |-  ( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( (
0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( p  e.  Prime  /\  k  e.  NN ) )
8685a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( p  e.  Prime  /\  k  e.  NN ) ) )
8758ex 434 . . . . . . 7  |-  ( A  e.  RR  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  -> 
0  <  A )
)
8887adantrd 468 . . . . . 6  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  0  <  A ) )
8986, 88jcad 533 . . . . 5  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  0  <  A ) ) )
90 elin 3687 . . . . . . . . 9  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) )
91 simprll 761 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  Prime )
9291biantrud 507 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] A )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) ) )
93 0red 9593 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  e.  RR )
94 simpl 457 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  RR )
9591, 5syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  NN )
9695nnred 10547 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  RR )
9795nnnn0d 10848 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  NN0 )
9897nn0ge0d 10851 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  p )
99 df-3an 975 . . . . . . . . . . . . 13  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  A )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) )
10023, 99syl6bb 261 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) ) )
101100baibd 907 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
p  <_  A )
)
10293, 94, 96, 98, 101syl22anc 1229 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] A )  <->  p  <_  A ) )
10392, 102bitr3d 255 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] A )  /\  p  e.  Prime )  <-> 
p  <_  A )
)
10490, 103syl5bb 257 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  <->  p  <_  A ) )
105 simprr 756 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <  A )
10694, 105elrpd 11250 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  RR+ )
107106relogcld 22736 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  A )  e.  RR )
10891, 15syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  ( ZZ>= `  2 )
)
109108, 18syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  1  <  p )
11096, 109rplogcld 22742 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  p )  e.  RR+ )
111107, 110rerpdivcld 11279 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( log `  A
)  /  ( log `  p ) )  e.  RR )
112 simprlr 762 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  NN )
113112nnzd 10961 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  ZZ )
114 flge 11906 . . . . . . . . . 10  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  k  e.  ZZ )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
115111, 113, 114syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
116112nnnn0d 10848 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  NN0 )
11795, 116nnexpcld 12295 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  NN )
118117nnrpd 11251 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  RR+ )
119118, 106logled 22740 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( log `  ( p ^ k
) )  <_  ( log `  A ) ) )
12095nnrpd 11251 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  RR+ )
121 relogexp 22708 . . . . . . . . . . . 12  |-  ( ( p  e.  RR+  /\  k  e.  ZZ )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
122120, 113, 121syl2anc 661 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
123122breq1d 4457 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( log `  (
p ^ k ) )  <_  ( log `  A )  <->  ( k  x.  ( log `  p
) )  <_  ( log `  A ) ) )
124112nnred 10547 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  RR )
125124, 107, 110lemuldivd 11297 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  x.  ( log `  p ) )  <_  ( log `  A
)  <->  k  <_  (
( log `  A
)  /  ( log `  p ) ) ) )
126119, 123, 1253bitrd 279 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  k  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
127 nnuz 11113 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
128112, 127syl6eleq 2565 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  ( ZZ>= `  1 )
)
129111flcld 11899 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )
130 elfz5 11676 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
131128, 129, 130syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
132115, 126, 1313bitr4rd 286 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  <->  ( p ^
k )  <_  A
) )
133104, 132anbi12d 710 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( p  <_  A  /\  ( p ^ k )  <_  A ) ) )
13494flcld 11899 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( |_ `  A )  e.  ZZ )
135 elfz5 11676 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ZZ )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  ( |_ `  A ) ) )
136128, 134, 135syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  ( |_ `  A ) ) )
137 flge 11906 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  ZZ )  ->  ( k  <_  A  <->  k  <_  ( |_ `  A ) ) )
13894, 113, 137syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  <_  A  <->  k  <_  ( |_ `  A ) ) )
139136, 138bitr4d 256 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  A ) )
140 elin 3687 . . . . . . . . . 10  |-  ( p  e.  ( ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  i^i  Prime )  <->  ( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  /\  p  e. 
Prime ) )
14191biantrud 507 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  <-> 
( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  /\  p  e. 
Prime ) ) )
142106rpge0d 11256 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  A )
143112nnrecred 10577 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
1  /  k )  e.  RR )
14494, 142, 143recxpcld 22832 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^c  ( 1  /  k ) )  e.  RR )
145 elicc2 11585 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( A  ^c 
( 1  /  k
) )  e.  RR )  ->  ( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( A  ^c  ( 1  /  k ) ) ) ) )
146 df-3an 975 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( A  ^c 
( 1  /  k
) ) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( A  ^c  ( 1  / 
k ) ) ) )
147145, 146syl6bb 261 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( A  ^c 
( 1  /  k
) )  e.  RR )  ->  ( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  <->  ( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  ( A  ^c 
( 1  /  k
) ) ) ) )
148147baibd 907 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  RR  /\  ( A  ^c 
( 1  /  k
) )  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  <->  p  <_  ( A  ^c  ( 1  /  k ) ) ) )
14993, 144, 96, 98, 148syl22anc 1229 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  <-> 
p  <_  ( A  ^c  ( 1  /  k ) ) ) )
150141, 149bitr3d 255 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  /\  p  e. 
Prime )  <->  p  <_  ( A  ^c  ( 1  /  k ) ) ) )
15194, 142, 143cxpge0d 22833 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  ( A  ^c 
( 1  /  k
) ) )
152112nnrpd 11251 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  RR+ )
15396, 98, 144, 151, 152cxple2d 22836 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  <_  ( A  ^c  ( 1  /  k ) )  <-> 
( p  ^c 
k )  <_  (
( A  ^c 
( 1  /  k
) )  ^c 
k ) ) )
15495nncnd 10548 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  CC )
155 cxpexp 22777 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  k  e.  NN0 )  -> 
( p  ^c 
k )  =  ( p ^ k ) )
156154, 116, 155syl2anc 661 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  ^c  k )  =  ( p ^ k ) )
157112nncnd 10548 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  CC )
158112nnne0d 10576 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  =/=  0 )
159157, 158recid2d 10312 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( 1  /  k
)  x.  k )  =  1 )
160159oveq2d 6298 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^c  ( ( 1  /  k )  x.  k ) )  =  ( A  ^c  1 ) )
161106, 143, 157cxpmuld 22843 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^c  ( ( 1  /  k )  x.  k ) )  =  ( ( A  ^c  ( 1  /  k ) )  ^c  k ) )
16294recnd 9618 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  CC )
163162cxp1d 22815 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^c  1 )  =  A )
164160, 161, 1633eqtr3d 2516 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( A  ^c 
( 1  /  k
) )  ^c 
k )  =  A )
165156, 164breq12d 4460 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  ^c 
k )  <_  (
( A  ^c 
( 1  /  k
) )  ^c 
k )  <->  ( p ^ k )  <_  A ) )
166150, 153, 1653bitrd 279 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  /\  p  e. 
Prime )  <->  ( p ^
k )  <_  A
) )
167140, 166syl5bb 257 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )  <->  ( p ^ k )  <_  A ) )
168139, 167anbi12d 710 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  <->  ( k  <_  A  /\  ( p ^
k )  <_  A
) ) )
169117nnred 10547 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  RR )
170 bernneq3 12258 . . . . . . . . . . . 12  |-  ( ( p  e.  ( ZZ>= ` 
2 )  /\  k  e.  NN0 )  ->  k  <  ( p ^ k
) )
171108, 116, 170syl2anc 661 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  <  ( p ^ k
) )
172124, 169, 171ltled 9728 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  <_  ( p ^ k
) )
173 letr 9674 . . . . . . . . . . 11  |-  ( ( k  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( k  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  k  <_  A ) )
174124, 169, 94, 173syl3anc 1228 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  k  <_  A ) )
175172, 174mpand 675 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  ->  k  <_  A ) )
176175pm4.71rd 635 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( k  <_  A  /\  ( p ^ k )  <_  A ) ) )
177154exp1d 12269 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ 1 )  =  p )
17895nnge1d 10574 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  1  <_  p )
17996, 178, 128leexp2ad 12306 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ 1 )  <_  ( p ^
k ) )
180177, 179eqbrtrrd 4469 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  <_  ( p ^ k
) )
181 letr 9674 . . . . . . . . . . 11  |-  ( ( p  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( p  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  p  <_  A ) )
18296, 169, 94, 181syl3anc 1228 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  p  <_  A ) )
183180, 182mpand 675 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  ->  p  <_  A ) )
184183pm4.71rd 635 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( p  <_  A  /\  ( p ^ k )  <_  A ) ) )
185168, 176, 1843bitr2rd 282 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  <_  A  /\  ( p ^ k
)  <_  A )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( (
0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
186133, 185bitrd 253 . . . . . 6  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
187186ex 434 . . . . 5  |-  ( A  e.  RR  ->  (
( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
)  ->  ( (
p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
) ) ) )
18882, 89, 187pm5.21ndd 354 . . . 4  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
1899adantrr 716 . . . 4  |-  ( ( A  e.  RR  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  p
)  e.  CC )
19067, 68, 1, 188, 189fsumcom2 13548 . . 3  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) sum_ p  e.  ( ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  i^i  Prime ) ( log `  p ) )
19166, 190eqtr4d 2511 . 2  |-  ( A  e.  RR  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( theta `  ( A  ^c  ( 1  /  k ) ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
19242, 43, 1913eqtr4d 2518 1  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) (
theta `  ( A  ^c  ( 1  / 
k ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    i^i cin 3475    C_ wss 3476   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Fincfn 7513   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    x. cmul 9493    < clt 9624    <_ cle 9625    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216   [,]cicc 11528   ...cfz 11668   |_cfl 11891   ^cexp 12130   #chash 12369   sum_csu 13467   Primecprime 14072   logclog 22670    ^c ccxp 22671   thetaccht 23092  ψcchp 23094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-dvds 13844  df-gcd 14000  df-prm 14073  df-pc 14216  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006  df-log 22672  df-cxp 22673  df-cht 23098  df-vma 23099  df-chp 23100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator