HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocvali Structured version   Unicode version

Theorem chocvali 24823
Description: Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of  A is the set of vectors that are orthogonal to all vectors in  A. (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocval.1  |-  A  e. 
CH
Assertion
Ref Expression
chocvali  |-  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 }
Distinct variable group:    x, y, A

Proof of Theorem chocvali
StepHypRef Expression
1 chocval.1 . . 3  |-  A  e. 
CH
21chssii 24755 . 2  |-  A  C_  ~H
3 ocval 24804 . 2  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 } )
42, 3ax-mp 5 1  |-  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1757   A.wral 2792   {crab 2796    C_ wss 3412   ` cfv 5502  (class class class)co 6176   0cc0 9369   ~Hchil 24442    .ih csp 24445   CHcch 24452   _|_cort 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-sep 4497  ax-nul 4505  ax-pr 4615  ax-hilex 24522
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-rab 2801  df-v 3056  df-sbc 3271  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4176  df-br 4377  df-opab 4435  df-mpt 4436  df-id 4720  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fv 5510  df-ov 6179  df-sh 24730  df-ch 24745  df-oc 24776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator