HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocnul Structured version   Unicode version

Theorem chocnul 26444
Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.)
Assertion
Ref Expression
chocnul  |-  ( _|_ `  (/) )  =  ~H

Proof of Theorem chocnul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3922 . . 3  |-  A. y  e.  (/)  ( x  .ih  y )  =  0
2 0ss 3813 . . . 4  |-  (/)  C_  ~H
3 ocel 26397 . . . 4  |-  ( (/)  C_ 
~H  ->  ( x  e.  ( _|_ `  (/) )  <->  ( x  e.  ~H  /\  A. y  e.  (/)  ( x  .ih  y )  =  0 ) ) )
42, 3ax-mp 5 . . 3  |-  ( x  e.  ( _|_ `  (/) )  <->  ( x  e.  ~H  /\  A. y  e.  (/)  ( x  .ih  y )  =  0 ) )
51, 4mpbiran2 917 . 2  |-  ( x  e.  ( _|_ `  (/) )  <->  x  e.  ~H )
65eqriv 2450 1  |-  ( _|_ `  (/) )  =  ~H
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804    C_ wss 3461   (/)c0 3783   ` cfv 5570  (class class class)co 6270   0cc0 9481   ~Hchil 26034    .ih csp 26037   _|_cort 26045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-hilex 26114
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-oc 26368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator