HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  choccli Structured version   Unicode version

Theorem choccli 25751
Description: Closure of  CH orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
choccl.1  |-  A  e. 
CH
Assertion
Ref Expression
choccli  |-  ( _|_ `  A )  e.  CH

Proof of Theorem choccli
StepHypRef Expression
1 choccl.1 . 2  |-  A  e. 
CH
2 choccl 25750 . 2  |-  ( A  e.  CH  ->  ( _|_ `  A )  e. 
CH )
31, 2ax-mp 5 1  |-  ( _|_ `  A )  e.  CH
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1762   ` cfv 5579   CHcch 25372   _|_cort 25373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561  ax-hilex 25442  ax-hfvadd 25443  ax-hvcom 25444  ax-hvass 25445  ax-hv0cl 25446  ax-hvaddid 25447  ax-hfvmul 25448  ax-hvmulid 25449  ax-hvmulass 25450  ax-hvdistr1 25451  ax-hvdistr2 25452  ax-hvmul0 25453  ax-hfi 25522  ax-his1 25525  ax-his2 25526  ax-his3 25527  ax-his4 25528  ax-hcompl 25645
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-icc 11525  df-fz 11662  df-fzo 11782  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-sum 13458  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cn 19487  df-cnp 19488  df-lm 19489  df-haus 19575  df-tx 19791  df-hmeo 19984  df-xms 20551  df-ms 20552  df-tms 20553  df-cau 21423  df-grpo 24719  df-gid 24720  df-ginv 24721  df-gdiv 24722  df-ablo 24810  df-vc 24965  df-nv 25011  df-va 25014  df-ba 25015  df-sm 25016  df-0v 25017  df-vs 25018  df-nmcv 25019  df-ims 25020  df-dip 25137  df-hnorm 25411  df-hvsub 25414  df-hlim 25415  df-hcau 25416  df-sh 25650  df-ch 25665  df-oc 25696
This theorem is referenced by:  pjoc1i  25875  pjoc2i  25882  chsscon3i  25905  chsscon1i  25906  chdmm1i  25921  chdmm2i  25922  chdmm3i  25923  chdmm4i  25924  chdmj1i  25925  chdmj2i  25926  chdmj3i  25927  chdmj4i  25928  sshhococi  25990  h1de2bi  25998  h1de2ctlem  25999  h1de2ci  26000  spanunsni  26023  pjoml2i  26029  pjoml3i  26030  pjoml4i  26031  pjoml6i  26033  cmcmlem  26035  cmcm2i  26037  cmcm3i  26038  cmcm4i  26039  cmbr2i  26040  cmbr3i  26044  cmbr4i  26045  cm0  26053  fh3i  26067  fh4i  26068  cm2mi  26070  qlax5i  26075  qlaxr3i  26080  osumcori  26087  osumcor2i  26088  spansnji  26090  3oalem5  26110  3oalem6  26111  3oai  26112  pjcompi  26116  pjadjii  26118  pjaddii  26119  pjmulii  26121  pjss2i  26124  pjssmii  26125  pjssge0ii  26126  pjcji  26128  pjocini  26142  pjds3i  26157  pjnormi  26165  pjpythi  26166  pjneli  26167  mayetes3i  26174  riesz3i  26507  pjnormssi  26613  pjssdif2i  26619  pjssdif1i  26620  pjimai  26621  pjoccoi  26623  pjtoi  26624  pjoci  26625  pjclem1  26640  pjci  26645  hst0  26678  sto1i  26681  sto2i  26682  stlei  26685  stji1i  26687  golem1  26716  golem2  26717  goeqi  26718  stcltrlem1  26721  stcltrlem2  26722  mdsldmd1i  26776  hatomistici  26807  cvexchi  26814  atomli  26827  atordi  26829  chirredlem4  26838  chirredi  26839  mdsymi  26856  cmmdi  26861  cmdmdi  26862  mdoc1i  26870  mdoc2i  26871  dmdoc1i  26872  dmdoc2i  26873  mdcompli  26874  dmdcompli  26875  mddmdin0i  26876
  Copyright terms: Public domain W3C validator