HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chm1i Unicode version

Theorem chm1i 22911
Description: Meet with lattice one in  CH. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1  |-  A  e. 
CH
Assertion
Ref Expression
chm1i  |-  ( A  i^i  ~H )  =  A

Proof of Theorem chm1i
StepHypRef Expression
1 ch0le.1 . . 3  |-  A  e. 
CH
21chssii 22687 . 2  |-  A  C_  ~H
3 df-ss 3294 . 2  |-  ( A 
C_  ~H  <->  ( A  i^i  ~H )  =  A )
42, 3mpbi 200 1  |-  ( A  i^i  ~H )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1721    i^i cin 3279    C_ wss 3280   ~Hchil 22375   CHcch 22385
This theorem is referenced by:  stcltrlem1  23732
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-hilex 22455
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-xp 4843  df-cnv 4845  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fv 5421  df-ov 6043  df-sh 22662  df-ch 22677
  Copyright terms: Public domain W3C validator