HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlej2i Structured version   Unicode version

Theorem chlej2i 25028
Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1  |-  A  e. 
CH
chjcl.2  |-  B  e. 
CH
chlub.1  |-  C  e. 
CH
Assertion
Ref Expression
chlej2i  |-  ( A 
C_  B  ->  ( C  vH  A )  C_  ( C  vH  B ) )

Proof of Theorem chlej2i
StepHypRef Expression
1 ch0le.1 . . 3  |-  A  e. 
CH
21chshii 24781 . 2  |-  A  e.  SH
3 chjcl.2 . . 3  |-  B  e. 
CH
43chshii 24781 . 2  |-  B  e.  SH
5 chlub.1 . . 3  |-  C  e. 
CH
65chshii 24781 . 2  |-  C  e.  SH
72, 4, 6shlej2i 24933 1  |-  ( A 
C_  B  ->  ( C  vH  A )  C_  ( C  vH  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1758    C_ wss 3435  (class class class)co 6199   CHcch 24482    vH chj 24486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-hilex 24552  ax-hfvadd 24553  ax-hv0cl 24556  ax-hfvmul 24558  ax-hvmul0 24563  ax-hfi 24632  ax-his2 24636  ax-his3 24637
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-po 4748  df-so 4749  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-ltxr 9533  df-sh 24760  df-ch 24775  df-oc 24806  df-chj 24864
This theorem is referenced by:  chlej12i  25029  pjoml4i  25141
  Copyright terms: Public domain W3C validator