HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlej12i Structured version   Unicode version

Theorem chlej12i 26216
Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1  |-  A  e. 
CH
chjcl.2  |-  B  e. 
CH
chlub.1  |-  C  e. 
CH
chlej12.4  |-  D  e. 
CH
Assertion
Ref Expression
chlej12i  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A  vH  C
)  C_  ( B  vH  D ) )

Proof of Theorem chlej12i
StepHypRef Expression
1 ch0le.1 . . 3  |-  A  e. 
CH
2 chjcl.2 . . 3  |-  B  e. 
CH
3 chlub.1 . . 3  |-  C  e. 
CH
41, 2, 3chlej1i 26214 . 2  |-  ( A 
C_  B  ->  ( A  vH  C )  C_  ( B  vH  C ) )
5 chlej12.4 . . 3  |-  D  e. 
CH
63, 5, 2chlej2i 26215 . 2  |-  ( C 
C_  D  ->  ( B  vH  C )  C_  ( B  vH  D ) )
74, 6sylan9ss 3522 1  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A  vH  C
)  C_  ( B  vH  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767    C_ wss 3481  (class class class)co 6295   CHcch 25669    vH chj 25673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-hilex 25739  ax-hfvadd 25740  ax-hv0cl 25743  ax-hfvmul 25745  ax-hvmul0 25750  ax-hfi 25819  ax-his2 25823  ax-his3 25824
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-ltxr 9645  df-sh 25947  df-ch 25962  df-oc 25993  df-chj 26051
This theorem is referenced by:  ledii  26277
  Copyright terms: Public domain W3C validator